Cargando…
A Bayesian View on Cryo-EM Structure Determination
Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in part...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314964/ https://www.ncbi.nlm.nih.gov/pubmed/22100448 http://dx.doi.org/10.1016/j.jmb.2011.11.010 |
_version_ | 1782228174585724928 |
---|---|
author | Scheres, Sjors H.W. |
author_facet | Scheres, Sjors H.W. |
author_sort | Scheres, Sjors H.W. |
collection | PubMed |
description | Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures. |
format | Online Article Text |
id | pubmed-3314964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-33149642012-04-11 A Bayesian View on Cryo-EM Structure Determination Scheres, Sjors H.W. J Mol Biol Article Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures. Elsevier 2012-01-13 /pmc/articles/PMC3314964/ /pubmed/22100448 http://dx.doi.org/10.1016/j.jmb.2011.11.010 Text en © 2012 Elsevier Ltd. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Scheres, Sjors H.W. A Bayesian View on Cryo-EM Structure Determination |
title | A Bayesian View on Cryo-EM Structure Determination |
title_full | A Bayesian View on Cryo-EM Structure Determination |
title_fullStr | A Bayesian View on Cryo-EM Structure Determination |
title_full_unstemmed | A Bayesian View on Cryo-EM Structure Determination |
title_short | A Bayesian View on Cryo-EM Structure Determination |
title_sort | bayesian view on cryo-em structure determination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314964/ https://www.ncbi.nlm.nih.gov/pubmed/22100448 http://dx.doi.org/10.1016/j.jmb.2011.11.010 |
work_keys_str_mv | AT scheressjorshw abayesianviewoncryoemstructuredetermination AT scheressjorshw bayesianviewoncryoemstructuredetermination |