Cargando…
Toll-Like Receptor 7 Agonist Therapy with Imidazoquinoline Enhances Cancer Cell Death and Increases Lymphocytic Infiltration and Proinflammatory Cytokine Production in Established Tumors of a Renal Cell Carcinoma Mouse Model
Imidazoquinolines are synthetic toll-like receptor 7 and 8 agonists and potent dendritic cell activators with established anticancer activity. Here we test the hypothesis that imidazoquinoline has in vivo efficacy within established renal cell carcinoma (RCC) tumors. Immunocompetent mice bearing syn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317372/ https://www.ncbi.nlm.nih.gov/pubmed/22481916 http://dx.doi.org/10.1155/2012/103298 |
Sumario: | Imidazoquinolines are synthetic toll-like receptor 7 and 8 agonists and potent dendritic cell activators with established anticancer activity. Here we test the hypothesis that imidazoquinoline has in vivo efficacy within established renal cell carcinoma (RCC) tumors. Immunocompetent mice bearing syngeneic RCC xenografts were treated with imidazoquinoline or placebo at two separate time points. Harvested tumors were assayed by TUNEL/caspase-3/Ki67 immunostains to evaluate cell death/apoptosis/proliferation, and CD3/B220/CD45 immunostains to evaluate T-cell lymphocyte/B-cell lymphocyte/pan-leukocyte tumor infiltration. ELISA measurement of tumor and serum levels of proinflammatory cytokines, IL-6 and MCP-1, was performed. A single imidazoquinoline dose significantly decreased RCC tumor growth by 50% and repeat dosing compounded the effect, without observed weight loss or other toxicity. Tumor immunostaining revealed significant increases in cell death and apoptosis without changes in cell proliferation, supporting induction of apoptosis as the primary mechanism of tumor growth suppression. Imidazoquinoline treatment also significantly enhanced peritumoral aggregation and intratumoral infiltration by T-cell lymphocytes, while increasing intratumoral (but not serum) levels of proinflammatory cytokines. In conclusion, imidazoquinoline treatment enhances T-cell lymphocyte infiltration and proinflammatory cytokine production within established mouse RCC tumors, while suppressing tumor growth via induction of cancer cell apoptosis. These findings support a therapeutic role for imidazoquinoline in RCC. |
---|