Cargando…
Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure
Some genetic polymorphisms of human ABC transporter genes are reportedly related to the risk of certain diseases and patients’ responses to medication. Human ABCC11 functions as an ATP-dependent efflux pump for amphipathic anions. One non-synonymous SNP 538G>A (Gly180Arg) has been found to greatl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319924/ https://www.ncbi.nlm.nih.gov/pubmed/21182469 http://dx.doi.org/10.2174/187152010794473975 |
_version_ | 1782228765579935744 |
---|---|
author | Toyoda, Yu Ishikawa, Toshihisa |
author_facet | Toyoda, Yu Ishikawa, Toshihisa |
author_sort | Toyoda, Yu |
collection | PubMed |
description | Some genetic polymorphisms of human ABC transporter genes are reportedly related to the risk of certain diseases and patients’ responses to medication. Human ABCC11 functions as an ATP-dependent efflux pump for amphipathic anions. One non-synonymous SNP 538G>A (Gly180Arg) has been found to greatly affect the function and stability of de novo synthesized ABCC11 (Arg180) variant protein. The SNP variant lacking N-linked glycosylation is recognized as a misfolded protein in the endoplasmic reticulum (ER) and readily undergoes proteasomal degradation. This ER-associated degradation of ABCC11 protein underlies the molecular mechanism of affecting the function of apocrine glands. On the other hand, the wild type (Gly180) of ABCC11 is associated with wettype earwax, axillary osmidrosis, colostrum secretion from the mammary gland, and the potential susceptibility of breast cancer. Furthermore, the wild type of ABCC11 reportedly has ability to efflux cyclic nucleotides and nucleoside-based anticancer drugs. The SNP (538G>A) of the ABCC11 gene is suggested to be a clinical biomarker for prediction of chemotherapeutic efficacy. Major obstacle to the successful chemotherapy of human cancer is development of resistance, and nucleoside-based chemotherapy is often characterized by inter-individual variability. This review provides an overview about the discovery and the genetic polymorphisms in human ABCC11. Furthermore, we focus on the impact of ABCC11 538G>A on the apocrine phenotype, patients’ response to nucleoside-based chemotherapy, and the potential risk of breast cancer. |
format | Online Article Text |
id | pubmed-3319924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Bentham Science Publishers Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-33199242012-04-05 Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure Toyoda, Yu Ishikawa, Toshihisa Anticancer Agents Med Chem Article Some genetic polymorphisms of human ABC transporter genes are reportedly related to the risk of certain diseases and patients’ responses to medication. Human ABCC11 functions as an ATP-dependent efflux pump for amphipathic anions. One non-synonymous SNP 538G>A (Gly180Arg) has been found to greatly affect the function and stability of de novo synthesized ABCC11 (Arg180) variant protein. The SNP variant lacking N-linked glycosylation is recognized as a misfolded protein in the endoplasmic reticulum (ER) and readily undergoes proteasomal degradation. This ER-associated degradation of ABCC11 protein underlies the molecular mechanism of affecting the function of apocrine glands. On the other hand, the wild type (Gly180) of ABCC11 is associated with wettype earwax, axillary osmidrosis, colostrum secretion from the mammary gland, and the potential susceptibility of breast cancer. Furthermore, the wild type of ABCC11 reportedly has ability to efflux cyclic nucleotides and nucleoside-based anticancer drugs. The SNP (538G>A) of the ABCC11 gene is suggested to be a clinical biomarker for prediction of chemotherapeutic efficacy. Major obstacle to the successful chemotherapy of human cancer is development of resistance, and nucleoside-based chemotherapy is often characterized by inter-individual variability. This review provides an overview about the discovery and the genetic polymorphisms in human ABCC11. Furthermore, we focus on the impact of ABCC11 538G>A on the apocrine phenotype, patients’ response to nucleoside-based chemotherapy, and the potential risk of breast cancer. Bentham Science Publishers Ltd 2010-10 2010-10 /pmc/articles/PMC3319924/ /pubmed/21182469 http://dx.doi.org/10.2174/187152010794473975 Text en © 2010 Bentham Science Publishers Ltd http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Toyoda, Yu Ishikawa, Toshihisa Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title | Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title_full | Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title_fullStr | Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title_full_unstemmed | Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title_short | Pharmacogenomics of Human ABC Transporter ABCC11 (MRP8): Potential Risk of Breast Cancer and Chemotherapy Failure |
title_sort | pharmacogenomics of human abc transporter abcc11 (mrp8): potential risk of breast cancer and chemotherapy failure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319924/ https://www.ncbi.nlm.nih.gov/pubmed/21182469 http://dx.doi.org/10.2174/187152010794473975 |
work_keys_str_mv | AT toyodayu pharmacogenomicsofhumanabctransporterabcc11mrp8potentialriskofbreastcancerandchemotherapyfailure AT ishikawatoshihisa pharmacogenomicsofhumanabctransporterabcc11mrp8potentialriskofbreastcancerandchemotherapyfailure |