Cargando…
Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability
Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a subs...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320574/ https://www.ncbi.nlm.nih.gov/pubmed/22496634 http://dx.doi.org/10.1371/journal.pcbi.1002459 |
Sumario: | Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps, we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the development of phenomics technology. |
---|