Cargando…
Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover
Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasm...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325215/ https://www.ncbi.nlm.nih.gov/pubmed/22511887 http://dx.doi.org/10.1371/journal.pgen.1002652 |
_version_ | 1782229402627604480 |
---|---|
author | Dorcey, Eavan Rodriguez-Villalon, Antia Salinas, Paula Santuari, Luca Pradervand, Sylvain Harshman, Keith Hardtke, Christian S. |
author_facet | Dorcey, Eavan Rodriguez-Villalon, Antia Salinas, Paula Santuari, Luca Pradervand, Sylvain Harshman, Keith Hardtke, Christian S. |
author_sort | Dorcey, Eavan |
collection | PubMed |
description | Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3–GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context. |
format | Online Article Text |
id | pubmed-3325215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33252152012-04-17 Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover Dorcey, Eavan Rodriguez-Villalon, Antia Salinas, Paula Santuari, Luca Pradervand, Sylvain Harshman, Keith Hardtke, Christian S. PLoS Genet Research Article Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3–GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context. Public Library of Science 2012-04-12 /pmc/articles/PMC3325215/ /pubmed/22511887 http://dx.doi.org/10.1371/journal.pgen.1002652 Text en Dorcey et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dorcey, Eavan Rodriguez-Villalon, Antia Salinas, Paula Santuari, Luca Pradervand, Sylvain Harshman, Keith Hardtke, Christian S. Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title | Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title_full | Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title_fullStr | Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title_full_unstemmed | Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title_short | Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover |
title_sort | context-dependent dual role of ski8 homologs in mrna synthesis and turnover |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325215/ https://www.ncbi.nlm.nih.gov/pubmed/22511887 http://dx.doi.org/10.1371/journal.pgen.1002652 |
work_keys_str_mv | AT dorceyeavan contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT rodriguezvillalonantia contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT salinaspaula contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT santuariluca contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT pradervandsylvain contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT harshmankeith contextdependentdualroleofski8homologsinmrnasynthesisandturnover AT hardtkechristians contextdependentdualroleofski8homologsinmrnasynthesisandturnover |