Cargando…
MutS homologue hMSH5: role in cisplatin-induced DNA damage response
BACKGROUND: Cisplatin (cis-diamminedichloroplatinum (II), CDDP) and its analogues constitute an important class of anticancer drugs in the treatment of various malignancies; however, its effectiveness is frequently affected by mutations in genes involved in the repair and signaling of cisplatin-indu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325843/ https://www.ncbi.nlm.nih.gov/pubmed/22401567 http://dx.doi.org/10.1186/1476-4598-11-10 |
Sumario: | BACKGROUND: Cisplatin (cis-diamminedichloroplatinum (II), CDDP) and its analogues constitute an important class of anticancer drugs in the treatment of various malignancies; however, its effectiveness is frequently affected by mutations in genes involved in the repair and signaling of cisplatin-induced DNA damage. These observations necessitate a need for a better understanding of the molecular events governing cellular sensitivity to cisplatin. RESULTS: Here, we show that hMSH5 mediates sensitization to cisplatin-induced DNA damage in human cells. Our study indicates that hMSH5 undergoes cisplatin-elicited protein induction and tyrosine phosphorylation. Silencing of hMSH5 by RNAi or expression of hMSH5 phosphorylation-resistant mutant hMSH5(Y742F )elevates cisplatin-induced G2 arrest and renders cells susceptible to cisplatin toxicity at clinically relevant doses. In addition, our data show that cisplatin promotes hMSH5 chromatin association and hMSH5 deficiency increases cisplatin-triggered γ-H2AX foci. Consistent with a possible role for hMSH5 in recombinational repair of cisplatin-triggered double-strand breaks (DSBs), the formation of cisplatin-induced hMSH5 nuclear foci is hRad51-dependent. CONCLUSION: Collectively, our current study has suggested a role for hMSH5 in the processing of cisplatin-induced DSBs, and silencing of hMSH5 may provide a new means to improve the therapeutic efficacy of cisplatin. |
---|