Cargando…

The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))

Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful...

Descripción completa

Detalles Bibliográficos
Autores principales: Adame-Gallegos, Jaime R., Shi, Jianguo, McIntosh, Richard S., Pleass, Richard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336205/
https://www.ncbi.nlm.nih.gov/pubmed/22343045
http://dx.doi.org/10.1016/j.exppara.2012.02.003
_version_ 1782230886863863808
author Adame-Gallegos, Jaime R.
Shi, Jianguo
McIntosh, Richard S.
Pleass, Richard J.
author_facet Adame-Gallegos, Jaime R.
Shi, Jianguo
McIntosh, Richard S.
Pleass, Richard J.
author_sort Adame-Gallegos, Jaime R.
collection PubMed
description Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.
format Online
Article
Text
id pubmed-3336205
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-33362052012-04-26 The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19)) Adame-Gallegos, Jaime R. Shi, Jianguo McIntosh, Richard S. Pleass, Richard J. Exp Parasitol Article Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model. Academic Press 2012-04 /pmc/articles/PMC3336205/ /pubmed/22343045 http://dx.doi.org/10.1016/j.exppara.2012.02.003 Text en © 2012 Elsevier Inc. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Adame-Gallegos, Jaime R.
Shi, Jianguo
McIntosh, Richard S.
Pleass, Richard J.
The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title_full The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title_fullStr The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title_full_unstemmed The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title_short The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1–19 (MSP1(19))
title_sort generation and evaluation of two panels of epitope-matched mouse igg1, igg2a, igg2b and igg3 antibodies specific for plasmodium falciparum and plasmodium yoelii merozoite surface protein 1–19 (msp1(19))
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336205/
https://www.ncbi.nlm.nih.gov/pubmed/22343045
http://dx.doi.org/10.1016/j.exppara.2012.02.003
work_keys_str_mv AT adamegallegosjaimer thegenerationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT shijianguo thegenerationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT mcintoshrichards thegenerationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT pleassrichardj thegenerationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT adamegallegosjaimer generationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT shijianguo generationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT mcintoshrichards generationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119
AT pleassrichardj generationandevaluationoftwopanelsofepitopematchedmouseigg1igg2aigg2bandigg3antibodiesspecificforplasmodiumfalciparumandplasmodiumyoeliimerozoitesurfaceprotein119msp119