Cargando…

Amniotic Epithelial Cells from the Human Placenta Potently Suppress a Mouse Model of Multiple Sclerosis

Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/8...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yu Han, Vaghjiani, Vijesh, Tee, Jing Yang, To, Kelly, Cui, Peng, Oh, Ding Yuan, Manuelpillai, Ursula, Toh, Ban-Hock, Chan, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338525/
https://www.ncbi.nlm.nih.gov/pubmed/22563398
http://dx.doi.org/10.1371/journal.pone.0035758
Descripción
Sumario:Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/80(+) monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment. Besides the known secretion of prostaglandin E2 (PGE2), we report the novel finding that hAEC utilize transforming growth factor-β (TGF-β) for immunosuppression. Neutralization of TGF-β or PGE2 in splenocyte proliferation assays significantly reduced hAEC-induced suppression. Splenocytes from hAEC-treated mice showed a Th2 cytokine shift with significantly elevated IL-5 production. While transferred CFSE-labeled hAEC could be detected in the lung, none were identified in the CNS or in lymphoid organs. This is the first report documenting the therapeutic effect of hAEC in a MS-like model and suggest that hAEC may have potential for use as therapy for MS.