Cargando…
An enhancer from the 8q24 prostate cancer risk region is sufficient to direct reporter gene expression to a subset of prostate stem-like epithelial cells in transgenic mice
Regions in the 8q24 gene desert contribute significantly to the risk of prostate cancer and other adult cancers. This region contains several DNA regions with enhancer activity in cultured cells. One such segment, histone acetylation peak 10 (AcP10), contains a risk single nucleotide polymorphism (S...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Limited
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339830/ https://www.ncbi.nlm.nih.gov/pubmed/22279083 http://dx.doi.org/10.1242/dmm.008458 |
Sumario: | Regions in the 8q24 gene desert contribute significantly to the risk of prostate cancer and other adult cancers. This region contains several DNA regions with enhancer activity in cultured cells. One such segment, histone acetylation peak 10 (AcP10), contains a risk single nucleotide polymorphism (SNP) that is significantly associated with the pathogenesis of colorectal, prostate and other cancers. The mechanism by which AcP10 influences cancer risk remains unknown. Here we show that AcP10 contains a sequence that is highly conserved across terrestrial vertebrates and is capable in transgenic mice of directing reporter gene expression to a subset of prostate lumenal epithelial cells. These cells include a small population of Nkx3.1-positive cells that persist even after androgen ablation. Castration-resistant Nkx3.1-positive (CARN) cells were shown by others to function both as stem cells and cells of origin of prostate cancer. Our results thus provide a mechanism by which AcP10 could influence prostate cancer risk. |
---|