Cargando…
Polymorphism rs4919510:C>G in Mature Sequence of Human MicroRNA-608 Contributes to the Risk of HER2-Positive Breast Cancer but Not Other Subtypes
BACKGROUND: A few polymorphisms are located in the mature microRNA sequences. Such polymorphisms could directly affect the binding of microRNA to hundreds of target mRNAs. It remains unknown whether rs4919510:C>G located in the mature miR-608 alters breast cancer susceptibility. METHODS: The asso...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346742/ https://www.ncbi.nlm.nih.gov/pubmed/22586447 http://dx.doi.org/10.1371/journal.pone.0035252 |
Sumario: | BACKGROUND: A few polymorphisms are located in the mature microRNA sequences. Such polymorphisms could directly affect the binding of microRNA to hundreds of target mRNAs. It remains unknown whether rs4919510:C>G located in the mature miR-608 alters breast cancer susceptibility. METHODS: The association of rs4919510:C>G with risk and pathologic features of breast cancer were investigated in two independent case-control studies, the first set including 1,138 sporadic breast cancer patients (including 927 invasive ductal carcinoma patients, 777 of them with known subtypes: 496 luminal-like, 133 HER2-positive, and 148 triple-negative) and 1,434 community-based controls, and the second set including 294 familial/early-onset breast cancer patients and 500 hospital-based cancer-free controls. Odds ratios (ORs) were estimated by logistic regression. Predicted targets of miR-608 and complementary sequences containing rs4919510:C>G were surveyed to reveal potential pathological mechanism. RESULTS: In the first set, although rs4919510:C>G was unrelated to breast cancer in general patients, variant genotypes (CG/GG) were specifically associated with increased risk of HER2-positive subtype (Adjusted OR = 1.97, 95% CI, 1.34−2.90 in the recessive model). Variant G-allele was the risk allele with OR of 1.62 (95% CI, 1.23−2.15). Patients carrying GG-genotype also had larger HER2-positive tumors (P for Kruskal-Wallis test = 0.006). The relationship between rs4919510:C>G and risk of HER2-positive subgroup was validated in the second set (Bonferroni corrected P = 0.06). The adjusted combined OR (total 164 HER2-positive cases) in the recessive model was 1.97 (95% CI, 1.43−2.72) for GG genotype (corrected P = 1.1×10(−4)). Bioinformatic analysis indicated that, HSF1, which is required for HER2-induced tumorigenesis, might be a target of miR-608. The minimum free-energy of ancestral-miR-608 (C-allele) binding to HSF1 is −35.9 kcal/mol, while that of variant-form (G-allele) is −31.5 kcal/mol, indicating a lower affinity of variant-miR-608 to HSF1 mRNA. CONCLUSION: rs4919510:C>G in mature miR-608 may influence HER2-positive breast cancer risk and tumor proliferation. |
---|