Cargando…

A Quantitative Study of the Mechanisms behind Thymic Atrophy in Gαi2-Deficient Mice during Colitis Development

Mice deficient for the G protein subunit Gαi2 spontaneously develop colitis, a chronic inflammatory disease associated with dysregulated T cell responses. We and others have previously demonstrated a thymic involution in these mice and an aberrant thymocyte dynamics. The Gαi2(−/−) mice have a dramat...

Descripción completa

Detalles Bibliográficos
Autores principales: Elgbratt, Kristina, Jansson, Andreas, Hultgren-Hörnquist, Elisabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349706/
https://www.ncbi.nlm.nih.gov/pubmed/22590596
http://dx.doi.org/10.1371/journal.pone.0036726
Descripción
Sumario:Mice deficient for the G protein subunit Gαi2 spontaneously develop colitis, a chronic inflammatory disease associated with dysregulated T cell responses. We and others have previously demonstrated a thymic involution in these mice and an aberrant thymocyte dynamics. The Gαi2(−/−) mice have a dramatically reduced fraction of double positive thymocytes and an increased fraction of single positive (SP) thymocytes. In this study, we quantify a number of critical parameters in order to narrow down the underlying mechanisms that cause the dynamical changes of the thymocyte development in the Gαi2(−/−) mice. Our data suggest that the increased fraction of SP thymocytes results only from a decreased number of DP thymocytes, since the number of SP thymocytes in the Gαi2(−/−) mice is comparable to the control littermates. By measuring the frequency of T cell receptor excision circles (TRECs) in the thymocytes, we demonstrate that the number of cell divisions the Gαi2(−/−) SP thymocytes undergo is comparable to SP thymocytes from control littermates. In addition, our data show that the mature SP CD4(+) and CD8(+) thymocytes divide to the same extent before they egress from the thymus. By estimating the number of peripheral TREC(+) T lymphocytes and their death rate, we could calculate the daily egression of thymocytes. Gαi2(−/−) mice with no/mild and moderate colitis were found to have a slower export rate in comparison to the control littermates. The quantitative measurements in this study suggest a number of dynamical changes in the thymocyte development during the progression of colitis.