Cargando…
Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30
Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350556/ https://www.ncbi.nlm.nih.gov/pubmed/22438580 http://dx.doi.org/10.1091/mbc.E11-06-0532 |
_version_ | 1782232688849059840 |
---|---|
author | Carrillo, Emilio Ben-Ari, Giora Wildenhain, Jan Tyers, Mike Grammentz, Dilon Lee, Traci A. |
author_facet | Carrillo, Emilio Ben-Ari, Giora Wildenhain, Jan Tyers, Mike Grammentz, Dilon Lee, Traci A. |
author_sort | Carrillo, Emilio |
collection | PubMed |
description | Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in the absence of methionine, studies indicate that Met32 has a prominent role over Met31 when Met30, a negative regulator of Met4 and Met32, is inactive. To characterize different roles of Met31 and Met32 in coordinating Met4-activated transcription, we examined transcription in strains lacking either Met31 or Met32 upon Met4 induction in the absence of Met30. Microarray analysis revealed that transcripts involved in sulfate assimilation and sulfonate metabolism were dramatically decreased in met32Δ cells compared to its wild-type and met31Δ counterparts. Despite this difference, both met31Δ and met32Δ cells used inorganic sulfur compounds and sulfonates as sole sulfur sources in minimal media when Met30 was present. This discrepancy may be explained by differential binding of Met31 to Cbf1-dependent promoters between these two conditions. In the absence of Met30, genome-wide chromatin immunoprecipitation analyses found that Met32 bound all Met4-bound targets, supporting Met32 as the main platform for Met4 recruitment. Finally, Met31 and Met32 levels were differentially regulated, with Met32 levels mimicking the profile for active Met4. These different properties of Met32 likely contribute to its prominent role in Met4-activated transcription when Met30 is absent. |
format | Online Article Text |
id | pubmed-3350556 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-33505562012-07-30 Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 Carrillo, Emilio Ben-Ari, Giora Wildenhain, Jan Tyers, Mike Grammentz, Dilon Lee, Traci A. Mol Biol Cell Articles Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in the absence of methionine, studies indicate that Met32 has a prominent role over Met31 when Met30, a negative regulator of Met4 and Met32, is inactive. To characterize different roles of Met31 and Met32 in coordinating Met4-activated transcription, we examined transcription in strains lacking either Met31 or Met32 upon Met4 induction in the absence of Met30. Microarray analysis revealed that transcripts involved in sulfate assimilation and sulfonate metabolism were dramatically decreased in met32Δ cells compared to its wild-type and met31Δ counterparts. Despite this difference, both met31Δ and met32Δ cells used inorganic sulfur compounds and sulfonates as sole sulfur sources in minimal media when Met30 was present. This discrepancy may be explained by differential binding of Met31 to Cbf1-dependent promoters between these two conditions. In the absence of Met30, genome-wide chromatin immunoprecipitation analyses found that Met32 bound all Met4-bound targets, supporting Met32 as the main platform for Met4 recruitment. Finally, Met31 and Met32 levels were differentially regulated, with Met32 levels mimicking the profile for active Met4. These different properties of Met32 likely contribute to its prominent role in Met4-activated transcription when Met30 is absent. The American Society for Cell Biology 2012-05-15 /pmc/articles/PMC3350556/ /pubmed/22438580 http://dx.doi.org/10.1091/mbc.E11-06-0532 Text en © 2012 Carrillo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles Carrillo, Emilio Ben-Ari, Giora Wildenhain, Jan Tyers, Mike Grammentz, Dilon Lee, Traci A. Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title | Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title_full | Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title_fullStr | Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title_full_unstemmed | Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title_short | Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30 |
title_sort | characterizing the roles of met31 and met32 in coordinating met4-activated transcription in the absence of met30 |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350556/ https://www.ncbi.nlm.nih.gov/pubmed/22438580 http://dx.doi.org/10.1091/mbc.E11-06-0532 |
work_keys_str_mv | AT carrilloemilio characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 AT benarigiora characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 AT wildenhainjan characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 AT tyersmike characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 AT grammentzdilon characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 AT leetracia characterizingtherolesofmet31andmet32incoordinatingmet4activatedtranscriptionintheabsenceofmet30 |