Cargando…

Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts

p38 MAP kinase is known to be activated by cellular stress finally leading to cell cycle arrest or apoptosis. Furthermore, a tumour suppressor role of p38 MAPK has been proposed. In contrast, a requirement of p38 for proliferation has also been described. To clarify this paradox, we investigated str...

Descripción completa

Detalles Bibliográficos
Autores principales: Faust, Dagmar, Schmitt, Christina, Oesch, Franz, Oesch-Bartlomowicz, Barbara, Schreck, Ilona, Weiss, Carsten, Dietrich, Cornelia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352310/
https://www.ncbi.nlm.nih.gov/pubmed/22404972
http://dx.doi.org/10.1186/1478-811X-10-6
Descripción
Sumario:p38 MAP kinase is known to be activated by cellular stress finally leading to cell cycle arrest or apoptosis. Furthermore, a tumour suppressor role of p38 MAPK has been proposed. In contrast, a requirement of p38 for proliferation has also been described. To clarify this paradox, we investigated stress- and mitogen-induced p38 signalling in the same cell type using fibroblasts. We demonstrate that - in the same cell line - p38 is activated by mitogens or cellular stress, but p38-dependent signalling is different. Exposure to cellular stress, such as anisomycin, leads to a strong and persistent p38 activation independent of GTPases. As a result, MK2 and downstream the transcription factor CREB are phosphorylated. In contrast, mitogenic stimulation results in a weaker and transient p38 activation, which upstream involves small GTPases and is required for cyclin D1 induction. Consequently, the retinoblastoma protein is phosphorylated and allows G1/S transition. Our data suggest a dual role of p38 and indicate that the level and/or duration of p38 activation determines the cellular response, i.e either proliferation or cell cycle arrest.