Cargando…
Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch
The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T–T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367172/ https://www.ncbi.nlm.nih.gov/pubmed/22362757 http://dx.doi.org/10.1093/nar/gks067 |
_version_ | 1782234812169322496 |
---|---|
author | Jourdan, Muriel Granzhan, Anton Guillot, Regis Dumy, Pascal Teulade-Fichou, Marie-Paule |
author_facet | Jourdan, Muriel Granzhan, Anton Guillot, Regis Dumy, Pascal Teulade-Fichou, Marie-Paule |
author_sort | Jourdan, Muriel |
collection | PubMed |
description | The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T–T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to an 11-mer DNA oligonucleotide containing a T–T mismatch was studied using NMR spectroscopy and NMR-restrained molecular modeling. The ligand forms a single type of complex with the DNA, in which one of the naphthalene rings of the ligand occupies the place of one of the mismatched thymines, which is flipped out of the duplex. The second naphthalene unit of the ligand intercalates at the A-T base pair flanking the mismatch site, leading to encapsulation of its thymine residue via double stacking. The polyammonium linking chains of the macrocycle are located in the minor and the major grooves of the oligonucleotide and participate in the stabilization of the complex by formation of hydrogen bonds with the encapsulated thymine base and the mismatched thymine remaining inside the helix. The study highlights the uniqueness of this cyclobisintercalation binding mode and its importance for recognition of DNA lesion sites by small molecules. |
format | Online Article Text |
id | pubmed-3367172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33671722012-06-05 Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch Jourdan, Muriel Granzhan, Anton Guillot, Regis Dumy, Pascal Teulade-Fichou, Marie-Paule Nucleic Acids Res Structural Biology The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T–T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to an 11-mer DNA oligonucleotide containing a T–T mismatch was studied using NMR spectroscopy and NMR-restrained molecular modeling. The ligand forms a single type of complex with the DNA, in which one of the naphthalene rings of the ligand occupies the place of one of the mismatched thymines, which is flipped out of the duplex. The second naphthalene unit of the ligand intercalates at the A-T base pair flanking the mismatch site, leading to encapsulation of its thymine residue via double stacking. The polyammonium linking chains of the macrocycle are located in the minor and the major grooves of the oligonucleotide and participate in the stabilization of the complex by formation of hydrogen bonds with the encapsulated thymine base and the mismatched thymine remaining inside the helix. The study highlights the uniqueness of this cyclobisintercalation binding mode and its importance for recognition of DNA lesion sites by small molecules. Oxford University Press 2012-06 2012-02-22 /pmc/articles/PMC3367172/ /pubmed/22362757 http://dx.doi.org/10.1093/nar/gks067 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Structural Biology Jourdan, Muriel Granzhan, Anton Guillot, Regis Dumy, Pascal Teulade-Fichou, Marie-Paule Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title | Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title_full | Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title_fullStr | Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title_full_unstemmed | Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title_short | Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
title_sort | double threading through dna: nmr structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367172/ https://www.ncbi.nlm.nih.gov/pubmed/22362757 http://dx.doi.org/10.1093/nar/gks067 |
work_keys_str_mv | AT jourdanmuriel doublethreadingthroughdnanmrstructuralstudyofabisnaphthalenemacrocycleboundtoathyminethyminemismatch AT granzhananton doublethreadingthroughdnanmrstructuralstudyofabisnaphthalenemacrocycleboundtoathyminethyminemismatch AT guillotregis doublethreadingthroughdnanmrstructuralstudyofabisnaphthalenemacrocycleboundtoathyminethyminemismatch AT dumypascal doublethreadingthroughdnanmrstructuralstudyofabisnaphthalenemacrocycleboundtoathyminethyminemismatch AT teuladefichoumariepaule doublethreadingthroughdnanmrstructuralstudyofabisnaphthalenemacrocycleboundtoathyminethyminemismatch |