Cargando…

Thrombospondin-1 in Early Flow-Related Remodeling of Mesenteric Arteries from Young Normotensive and Spontaneously Hypertensive Rats

We tested the hypotheses that TSP-1 participates in the initiation of remodeling of small muscular arteries in response to altered blood flow and that the N-terminal domain of TSP-1 (hepI) can reverse the pathological inward remodeling of resistance arteries from SHR. We measured (1) changes in gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemkens, P, Boari, GEM, Fazzi, GE, Janssen, GMJ, Murphy-Ullrich, JE, Schiffers, PMH, De Mey, JGR
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367304/
https://www.ncbi.nlm.nih.gov/pubmed/22670160
http://dx.doi.org/10.2174/1874192401206010050
Descripción
Sumario:We tested the hypotheses that TSP-1 participates in the initiation of remodeling of small muscular arteries in response to altered blood flow and that the N-terminal domain of TSP-1 (hepI) can reverse the pathological inward remodeling of resistance arteries from SHR. We measured (1) changes in gene/protein expression in MA of 6 week old WKY and SHR exposed to either increased (+ 100 %) or reduced blood flow (- 90 %) for 24-40 hours and (2) structural changes in MA of 12 week old SHR exposed for 3 days to hepI in organ culture. In both HF and LF of WKY, mRNA expression of eNOS, sGCα1 and PKG1β were significantly reduced (p < 0.05), whereas mRNA of TSP1 was markedly increased (p < 0.05). In MA of young SHR, similar results were obtained except that eNOS mRNA was not reduced in LF. Expression of TSP1 protein was significantly increased in LF of young WKY and SHR (p < 0.05). Exposure of MA of 12 week old SHR to hepI (1 µmol/L) resulted in a rapid lumen diameter increase (+ 12 ± 2% after 3 days) without alteration in vascular reactivity, distensibility, media surface area or cell number. These are the first observations of reduced gene expression of eNOS/sGC/PKG and increased expression of TSP1 at the initiation of arterial remodeling in young WKY and SHR, irrespective of its outward or inward outcome. Furthermore, a fragment of TSP-1 rapidly and directly reversed pathological inward arterial remodeling of SHR in vitro.