Cargando…

The Association of Dietary Intake of Purine-Rich Vegetables, Sugar-Sweetened Beverages and Dairy with Plasma Urate, in a Cross-Sectional Study

INTRODUCTION: Hyperuricemia is a strong risk factor for gout. The incidence of gout and hyperuricemia has increased recently, which is thought to be, in part, due to changes in diet and lifestyle. Objective of this study was to investigate the association between plasma urate concentration and: a) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zgaga, Lina, Theodoratou, Evropi, Kyle, Janet, Farrington, Susan M., Agakov, Felix, Tenesa, Albert, Walker, Marion, McNeill, Geraldine, Wright, Alan F., Rudan, Igor, Dunlop, Malcolm G., Campbell, Harry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368949/
https://www.ncbi.nlm.nih.gov/pubmed/22701608
http://dx.doi.org/10.1371/journal.pone.0038123
Descripción
Sumario:INTRODUCTION: Hyperuricemia is a strong risk factor for gout. The incidence of gout and hyperuricemia has increased recently, which is thought to be, in part, due to changes in diet and lifestyle. Objective of this study was to investigate the association between plasma urate concentration and: a) food items: dairy, sugar-sweetened beverages (SSB) and purine-rich vegetables; b) related nutrients: lactose, calcium and fructose. METHODS: A total of 2,076 healthy participants (44% female) from a population-based case-control study in Scotland (1999–2006) were included in this study. Dietary data was collected using a semi-quantitative food frequency questionnaire (FFQ). Nutrient intake was calculated using FFQ and composition of foods information. Urate concentration was measured in plasma. RESULTS: Mean urate concentration was 283.8±72.1 mmol/dL (females: 260.1±68.9 mmol/dL and males: 302.3±69.2 mmol/dL). Using multivariate regression analysis we found that dairy, calcium and lactose intakes were inversely associated with urate (p = 0.008, p = 0.003, p = 0.0007, respectively). Overall SSB consumption was positively associated with urate (p = 0.008), however, energy-adjusted fructose intake was not associated with urate (p = 0.66). The intake of purine-rich vegetables was not associated to plasma urate (p = 0.38). CONCLUSIONS: Our results suggest that limiting purine-rich vegetables intake for lowering plasma urate may be ineffectual, despite current recommendations. Although a positive association between plasma urate and SSB consumption was found, there was no association with fructose intake, suggesting that fructose is not the causal agent underlying the SSB-urate association. The abundant evidence supporting the inverse association between plasma urate concentration and dairy consumption should be reflected in dietary guidelines for hyperuricemic individuals and gout patients. Further research is needed to establish which nutrients and food products influence plasma urate concentration, to inform the development of evidence-based dietary guidelines.