Cargando…
DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity
BACKGROUND: Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369819/ https://www.ncbi.nlm.nih.gov/pubmed/22480385 http://dx.doi.org/10.1186/1756-0500-5-178 |
Sumario: | BACKGROUND: Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. RESULTS: Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neo(R )gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. CONCLUSIONS: We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. |
---|