Cargando…

Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera

PURPOSE: To investigate whether myopia development is associated with changes of scleral DNA methylation in cytosine-phosphate-guanine (CpG) sites in the collagen 1A1 (COL1A1) promoter and messenger RNA (mRNA) levels following murine form deprivation myopia. METHODS: Fifty-seven C57BL/6 mice (postna...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xiangtian, Ji, Fengtao, An, Jianhong, Zhao, Fuxin, Shi, Fanjun, Huang, Furong, Li, Yuan, Jiao, Shiming, Yan, Dongsheng, Chen, Xiaoyan, Chen, JiangFan, Qu, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369898/
https://www.ncbi.nlm.nih.gov/pubmed/22690110
Descripción
Sumario:PURPOSE: To investigate whether myopia development is associated with changes of scleral DNA methylation in cytosine-phosphate-guanine (CpG) sites in the collagen 1A1 (COL1A1) promoter and messenger RNA (mRNA) levels following murine form deprivation myopia. METHODS: Fifty-seven C57BL/6 mice (postnatal day 23) were randomly assigned to four groups: (1) monocular form deprivation (MD) in which a diffuser lens was placed over one eye for 28 days; (2) normal controls without MD; (3) MD recovery in which the diffuser lens was removed for seven days; and (4) MD recovery normal controls. The DNA methylation pattern in COL1A1 promoter and exon 1 was determined by bisulfite DNA sequencing, and the COL1A1 mRNA level in sclera was determined by quantitative PCR. RESULTS: MD was found to induce myopia in the treated eyes. Six CpG sites in the promoter and exon 1 region of COL1A1 were methylated with significantly higher frequency in the treated eyes than normal control eyes (p<0.05), with CpG island methylation in MD-contralateral eyes being intermediate. Consistent with the CpG methylation, scleral COL1A1 mRNA was reduced by 57% in the MD-treated eyes compared to normal controls (p<0.05). After seven days of MD recovery, CpG methylation was significantly reduced (p=0.01). The methylation patterns returned to near normal level in five CpG sites, but the sixth was hypomethylated compared to normal controls. CONCLUSIONS: In parallel with the development of myopia and the reduced COL1A1 mRNA, the frequency of methylation in CpG sites of the COL1A1 promoter/exon 1 increased during MD and returned to near normal during recovery. Thus, hypermethylation of CpG sites in the promoter/exon 1 of COL1A1 may underlie reduced collagen synthesis at the transcriptional level in myopic scleras.