Cargando…
Consensus Rules in Variant Detection from Next-Generation Sequencing Data
A critical step in detecting variants from next-generation sequencing data is post hoc filtering of putative variants called or predicted by computational tools. Here, we highlight four critical parameters that could enhance the accuracy of called single nucleotide variants and insertions/deletions:...
Autores principales: | Jia, Peilin, Li, Fei, Xia, Jufeng, Chen, Haiquan, Ji, Hongbin, Pao, William, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371040/ https://www.ncbi.nlm.nih.gov/pubmed/22715385 http://dx.doi.org/10.1371/journal.pone.0038470 |
Ejemplares similares
-
Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers
por: Wang, Qingguo, et al.
Publicado: (2013) -
Personalized Pathway Enrichment Map of Putative Cancer Genes from Next Generation Sequencing Data
por: Jia, Peilin, et al.
Publicado: (2012) -
VirusFinder: Software for Efficient and Accurate Detection of Viruses and Their Integration Sites in Host Genomes through Next Generation Sequencing Data
por: Wang, Qingguo, et al.
Publicado: (2013) -
VarWalker: Personalized Mutation Network Analysis of Putative Cancer Genes from Next-Generation Sequencing Data
por: Jia, Peilin, et al.
Publicado: (2014) -
Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives
por: Zhao, Min, et al.
Publicado: (2013)