Cargando…
The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374832/ https://www.ncbi.nlm.nih.gov/pubmed/22719899 http://dx.doi.org/10.1371/journal.pone.0038542 |
_version_ | 1782235691532419072 |
---|---|
author | Summers, Emma L. Meindl, Kathrin Usón, Isabel Mitra, Alok K. Radjainia, Mazdak Colangeli, Roberto Alland, David Arcus, Vickery L. |
author_facet | Summers, Emma L. Meindl, Kathrin Usón, Isabel Mitra, Alok K. Radjainia, Mazdak Colangeli, Roberto Alland, David Arcus, Vickery L. |
author_sort | Summers, Emma L. |
collection | PubMed |
description | Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated. |
format | Online Article Text |
id | pubmed-3374832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33748322012-06-20 The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection Summers, Emma L. Meindl, Kathrin Usón, Isabel Mitra, Alok K. Radjainia, Mazdak Colangeli, Roberto Alland, David Arcus, Vickery L. PLoS One Research Article Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated. Public Library of Science 2012-06-13 /pmc/articles/PMC3374832/ /pubmed/22719899 http://dx.doi.org/10.1371/journal.pone.0038542 Text en Summers et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Summers, Emma L. Meindl, Kathrin Usón, Isabel Mitra, Alok K. Radjainia, Mazdak Colangeli, Roberto Alland, David Arcus, Vickery L. The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title | The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title_full | The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title_fullStr | The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title_full_unstemmed | The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title_short | The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection |
title_sort | structure of the oligomerization domain of lsr2 from mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374832/ https://www.ncbi.nlm.nih.gov/pubmed/22719899 http://dx.doi.org/10.1371/journal.pone.0038542 |
work_keys_str_mv | AT summersemmal thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT meindlkathrin thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT usonisabel thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT mitraalokk thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT radjainiamazdak thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT colangeliroberto thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT allanddavid thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT arcusvickeryl thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT summersemmal structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT meindlkathrin structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT usonisabel structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT mitraalokk structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT radjainiamazdak structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT colangeliroberto structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT allanddavid structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection AT arcusvickeryl structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection |