Cargando…

The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen in...

Descripción completa

Detalles Bibliográficos
Autores principales: Summers, Emma L., Meindl, Kathrin, Usón, Isabel, Mitra, Alok K., Radjainia, Mazdak, Colangeli, Roberto, Alland, David, Arcus, Vickery L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374832/
https://www.ncbi.nlm.nih.gov/pubmed/22719899
http://dx.doi.org/10.1371/journal.pone.0038542
_version_ 1782235691532419072
author Summers, Emma L.
Meindl, Kathrin
Usón, Isabel
Mitra, Alok K.
Radjainia, Mazdak
Colangeli, Roberto
Alland, David
Arcus, Vickery L.
author_facet Summers, Emma L.
Meindl, Kathrin
Usón, Isabel
Mitra, Alok K.
Radjainia, Mazdak
Colangeli, Roberto
Alland, David
Arcus, Vickery L.
author_sort Summers, Emma L.
collection PubMed
description Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated.
format Online
Article
Text
id pubmed-3374832
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33748322012-06-20 The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection Summers, Emma L. Meindl, Kathrin Usón, Isabel Mitra, Alok K. Radjainia, Mazdak Colangeli, Roberto Alland, David Arcus, Vickery L. PLoS One Research Article Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated. Public Library of Science 2012-06-13 /pmc/articles/PMC3374832/ /pubmed/22719899 http://dx.doi.org/10.1371/journal.pone.0038542 Text en Summers et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Summers, Emma L.
Meindl, Kathrin
Usón, Isabel
Mitra, Alok K.
Radjainia, Mazdak
Colangeli, Roberto
Alland, David
Arcus, Vickery L.
The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title_full The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title_fullStr The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title_full_unstemmed The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title_short The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection
title_sort structure of the oligomerization domain of lsr2 from mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374832/
https://www.ncbi.nlm.nih.gov/pubmed/22719899
http://dx.doi.org/10.1371/journal.pone.0038542
work_keys_str_mv AT summersemmal thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT meindlkathrin thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT usonisabel thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT mitraalokk thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT radjainiamazdak thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT colangeliroberto thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT allanddavid thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT arcusvickeryl thestructureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT summersemmal structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT meindlkathrin structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT usonisabel structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT mitraalokk structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT radjainiamazdak structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT colangeliroberto structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT allanddavid structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection
AT arcusvickeryl structureoftheoligomerizationdomainoflsr2frommycobacteriumtuberculosisrevealsamechanismforchromosomeorganizationandprotection