Cargando…

Sphingosine Kinase-1-Dependent and -Independent Inhibitory Effects of Zanthoxyli Fructus to Attenuate the Activation of Mucosal Mast Cells and Ameliorate Food Allergies in Mice

Food allergy (FA) is relatively a common disease in infants, but effective drug therapies are not yet available. Notably, mucosal mast cells, but not connective-tissue mast cells, play important roles in food allergic reactions via the release of inflammatory mediators. Therefore, we screened medici...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoyu, Kageyama-Yahara, Natsuko, Hayashi, Shusaku, Yamamoto, Takeshi, Kadowaki, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375181/
https://www.ncbi.nlm.nih.gov/pubmed/22719791
http://dx.doi.org/10.1155/2012/862743
Descripción
Sumario:Food allergy (FA) is relatively a common disease in infants, but effective drug therapies are not yet available. Notably, mucosal mast cells, but not connective-tissue mast cells, play important roles in food allergic reactions via the release of inflammatory mediators. Therefore, we screened medicinal herb extracts for in vitro and in vivo antiallergic activity through inhibiting mucosal mast cell activation. As a result, both antigen-induced and calcium ionophore-induced degranulation was significantly inhibited by Zanthoxyli Fructus water extract (ZF) in mucosal-type murine bone marrow-derived mast cells (mBMMCs). ZF suppressed the antigen-induced [Ca(2+)](i) elevation and the antigen-enhanced mRNA expression of TNF-α, IL-4, and IL-13. The transcriptome and real-time PCR analyses revealed that ZF greatly decreased the antigen-enhanced expression level of sphingosine kinase 1 (Sphk1), which plays a key role in the FcεRI-mediated immune responses in mast cells. Furthermore, ZF inhibited allergic symptoms in an ovalbumin-caused murine FA model and decreased the number of infiltrating mucosal mast cells and the enhanced mRNA expression levels of IL-4 and Sphk1 in the FA mice colons. These results indicate that ZF suppresses mucosal mast cell activities mainly through Sphk1-dependent mechanism, and ZF is utilized for the development of a novel, potent anti-FA agent.