Cargando…

Acquiring Metastatic Competence by Oral Squamous Cell Carcinoma Cells Is Associated with Differential Expression of α-Tubulin Isoforms

We performed comparative global proteomics analyses of patient-matched primary (686Tu) and metastatic (686Ln) OSCC cells. The metastatic OSCC 686Ln cells showed greater in vitro migratory/invasive potential and distinct cell shape from their parental primary 686Tu cells. Ettan DIGE analysis revealed...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Becky, Engler, David, Dubinsky, William, Wu, Jean, Vigneswaran, Nadarajah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376782/
https://www.ncbi.nlm.nih.gov/pubmed/22719762
http://dx.doi.org/10.1155/2012/491685
Descripción
Sumario:We performed comparative global proteomics analyses of patient-matched primary (686Tu) and metastatic (686Ln) OSCC cells. The metastatic OSCC 686Ln cells showed greater in vitro migratory/invasive potential and distinct cell shape from their parental primary 686Tu cells. Ettan DIGE analysis revealed 1316 proteins spots in both cell lines with >85% to be quantitatively similar (<2 folds) between the two cell lines. However, two protein spots among four serial spots were highly dominant in 686Ln cells. Mass spectrometry sequencing demonstrated all four spots to be α-tubulin isotypes. Further analysis showed no significant quantitative difference in the α-tubulin between the two cell lines either at mRNA or protein levels. Thus, two distinct isoforms of α-tubulin, probably due to posttranslational modification, were associated with metastatic 686Ln cells. Immunofluorescence demonstrated remarkable differences in the cytosolic α-tubulin distribution patterns between the two cells. In 686Tu cells, α-tubulin proteins formed a normal network composed of filaments. In contrast, α-tubulin in 686Ln cells exhibited only partial cytoskeletal distribution with the majority of the protein diffusely distributed within the cytosol. Since α-tubulin is critical for cell shape and mobility, our finding suggests a role of α-tubulin isoforms in acquisition of metastatic phenotype and represents potential target for therapeutic intervention.