Cargando…
Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours
Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377989/ https://www.ncbi.nlm.nih.gov/pubmed/22569339 http://dx.doi.org/10.1038/msb.2012.13 |
Sumario: | Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes have metabolic pathway neighbours, we developed a global framework that utilizes the pathway and (meta)genomic neighbour information to assign candidate sequences to orphan enzymes. For 131 orphan enzymes (37% of those for which (meta)genomic neighbours are available), we associate sequences to them using scoring parameters with an estimated accuracy of 70%, implying functional annotation of 16 345 gene sequences in numerous (meta)genomes. As a case in point, two of these candidate sequences were experimentally validated to encode the predicted activity. In addition, we augmented the currently available genome-scale metabolic models with these new sequence–function associations and were able to expand the models by on average 8%, with a considerable change in the flux connectivity patterns and improved essentiality prediction. |
---|