Cargando…

Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia

Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses i...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckle, Tobias, Hartmann, Katherine, Bonney, Stephanie, Reithel, Susan, Mittelbronn, Michel, Walker, Lori A., Lowes, Brian D., Han, Jun, Borchers, Christoph H., Buttrick, Peter M., Kominsky, Douglas J., Colgan, Sean P., Eltzschig, Holger K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378044/
https://www.ncbi.nlm.nih.gov/pubmed/22504483
http://dx.doi.org/10.1038/nm.2728
_version_ 1782236016689545216
author Eckle, Tobias
Hartmann, Katherine
Bonney, Stephanie
Reithel, Susan
Mittelbronn, Michel
Walker, Lori A.
Lowes, Brian D.
Han, Jun
Borchers, Christoph H.
Buttrick, Peter M.
Kominsky, Douglas J.
Colgan, Sean P.
Eltzschig, Holger K.
author_facet Eckle, Tobias
Hartmann, Katherine
Bonney, Stephanie
Reithel, Susan
Mittelbronn, Michel
Walker, Lori A.
Lowes, Brian D.
Han, Jun
Borchers, Christoph H.
Buttrick, Peter M.
Kominsky, Douglas J.
Colgan, Sean P.
Eltzschig, Holger K.
author_sort Eckle, Tobias
collection PubMed
description Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses identified the circadian rhythm protein period2 (Per2). Subsequent pharmacologic and genetic studies confirmed Adora2b-dependent stabilization of Per2 during myocardial ischemia. Functional studies of myocardial ischemia in Per2(−/−) mice revealed larger infarct sizes and abolished cardio-protection by ischemic preconditioning. Metabolic studies during myocardial ischemia uncovered a limited ability of Per2(−/−) mice to utilize carbohydrates via oxygen-efficient glycolysis. These metabolic alterations were associated with a failure in Per2(−/−) mice to stabilize hypoxia-inducible-factor Hif1a. Moreover, cardiac stabilization of Per2 via light-exposure transcriptionally enhanced glycolysis, and provided period-specific cardio-protection from ischemia. Together, these studies identify Per2 as key regulator of ischemia tolerance through reprogramming of cardiac metabolism and implicate Per2 as novel therapeutic modality during acute myocardial ischemia.
format Online
Article
Text
id pubmed-3378044
institution National Center for Biotechnology Information
language English
publishDate 2012
record_format MEDLINE/PubMed
spelling pubmed-33780442012-11-01 Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia Eckle, Tobias Hartmann, Katherine Bonney, Stephanie Reithel, Susan Mittelbronn, Michel Walker, Lori A. Lowes, Brian D. Han, Jun Borchers, Christoph H. Buttrick, Peter M. Kominsky, Douglas J. Colgan, Sean P. Eltzschig, Holger K. Nat Med Article Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses identified the circadian rhythm protein period2 (Per2). Subsequent pharmacologic and genetic studies confirmed Adora2b-dependent stabilization of Per2 during myocardial ischemia. Functional studies of myocardial ischemia in Per2(−/−) mice revealed larger infarct sizes and abolished cardio-protection by ischemic preconditioning. Metabolic studies during myocardial ischemia uncovered a limited ability of Per2(−/−) mice to utilize carbohydrates via oxygen-efficient glycolysis. These metabolic alterations were associated with a failure in Per2(−/−) mice to stabilize hypoxia-inducible-factor Hif1a. Moreover, cardiac stabilization of Per2 via light-exposure transcriptionally enhanced glycolysis, and provided period-specific cardio-protection from ischemia. Together, these studies identify Per2 as key regulator of ischemia tolerance through reprogramming of cardiac metabolism and implicate Per2 as novel therapeutic modality during acute myocardial ischemia. 2012-04-15 /pmc/articles/PMC3378044/ /pubmed/22504483 http://dx.doi.org/10.1038/nm.2728 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Eckle, Tobias
Hartmann, Katherine
Bonney, Stephanie
Reithel, Susan
Mittelbronn, Michel
Walker, Lori A.
Lowes, Brian D.
Han, Jun
Borchers, Christoph H.
Buttrick, Peter M.
Kominsky, Douglas J.
Colgan, Sean P.
Eltzschig, Holger K.
Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title_full Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title_fullStr Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title_full_unstemmed Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title_short Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
title_sort adora2b-elicited per2 stabilization promotes a hif-dependent metabolic switch critical for myocardial adaptation to ischemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378044/
https://www.ncbi.nlm.nih.gov/pubmed/22504483
http://dx.doi.org/10.1038/nm.2728
work_keys_str_mv AT eckletobias adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT hartmannkatherine adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT bonneystephanie adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT reithelsusan adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT mittelbronnmichel adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT walkerloria adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT lowesbriand adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT hanjun adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT borcherschristophh adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT buttrickpeterm adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT kominskydouglasj adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT colganseanp adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia
AT eltzschigholgerk adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia