Cargando…
Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia
Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378044/ https://www.ncbi.nlm.nih.gov/pubmed/22504483 http://dx.doi.org/10.1038/nm.2728 |
_version_ | 1782236016689545216 |
---|---|
author | Eckle, Tobias Hartmann, Katherine Bonney, Stephanie Reithel, Susan Mittelbronn, Michel Walker, Lori A. Lowes, Brian D. Han, Jun Borchers, Christoph H. Buttrick, Peter M. Kominsky, Douglas J. Colgan, Sean P. Eltzschig, Holger K. |
author_facet | Eckle, Tobias Hartmann, Katherine Bonney, Stephanie Reithel, Susan Mittelbronn, Michel Walker, Lori A. Lowes, Brian D. Han, Jun Borchers, Christoph H. Buttrick, Peter M. Kominsky, Douglas J. Colgan, Sean P. Eltzschig, Holger K. |
author_sort | Eckle, Tobias |
collection | PubMed |
description | Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses identified the circadian rhythm protein period2 (Per2). Subsequent pharmacologic and genetic studies confirmed Adora2b-dependent stabilization of Per2 during myocardial ischemia. Functional studies of myocardial ischemia in Per2(−/−) mice revealed larger infarct sizes and abolished cardio-protection by ischemic preconditioning. Metabolic studies during myocardial ischemia uncovered a limited ability of Per2(−/−) mice to utilize carbohydrates via oxygen-efficient glycolysis. These metabolic alterations were associated with a failure in Per2(−/−) mice to stabilize hypoxia-inducible-factor Hif1a. Moreover, cardiac stabilization of Per2 via light-exposure transcriptionally enhanced glycolysis, and provided period-specific cardio-protection from ischemia. Together, these studies identify Per2 as key regulator of ischemia tolerance through reprogramming of cardiac metabolism and implicate Per2 as novel therapeutic modality during acute myocardial ischemia. |
format | Online Article Text |
id | pubmed-3378044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
record_format | MEDLINE/PubMed |
spelling | pubmed-33780442012-11-01 Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia Eckle, Tobias Hartmann, Katherine Bonney, Stephanie Reithel, Susan Mittelbronn, Michel Walker, Lori A. Lowes, Brian D. Han, Jun Borchers, Christoph H. Buttrick, Peter M. Kominsky, Douglas J. Colgan, Sean P. Eltzschig, Holger K. Nat Med Article Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses identified the circadian rhythm protein period2 (Per2). Subsequent pharmacologic and genetic studies confirmed Adora2b-dependent stabilization of Per2 during myocardial ischemia. Functional studies of myocardial ischemia in Per2(−/−) mice revealed larger infarct sizes and abolished cardio-protection by ischemic preconditioning. Metabolic studies during myocardial ischemia uncovered a limited ability of Per2(−/−) mice to utilize carbohydrates via oxygen-efficient glycolysis. These metabolic alterations were associated with a failure in Per2(−/−) mice to stabilize hypoxia-inducible-factor Hif1a. Moreover, cardiac stabilization of Per2 via light-exposure transcriptionally enhanced glycolysis, and provided period-specific cardio-protection from ischemia. Together, these studies identify Per2 as key regulator of ischemia tolerance through reprogramming of cardiac metabolism and implicate Per2 as novel therapeutic modality during acute myocardial ischemia. 2012-04-15 /pmc/articles/PMC3378044/ /pubmed/22504483 http://dx.doi.org/10.1038/nm.2728 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Eckle, Tobias Hartmann, Katherine Bonney, Stephanie Reithel, Susan Mittelbronn, Michel Walker, Lori A. Lowes, Brian D. Han, Jun Borchers, Christoph H. Buttrick, Peter M. Kominsky, Douglas J. Colgan, Sean P. Eltzschig, Holger K. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title | Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title_full | Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title_fullStr | Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title_full_unstemmed | Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title_short | Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch critical for myocardial adaptation to ischemia |
title_sort | adora2b-elicited per2 stabilization promotes a hif-dependent metabolic switch critical for myocardial adaptation to ischemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378044/ https://www.ncbi.nlm.nih.gov/pubmed/22504483 http://dx.doi.org/10.1038/nm.2728 |
work_keys_str_mv | AT eckletobias adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT hartmannkatherine adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT bonneystephanie adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT reithelsusan adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT mittelbronnmichel adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT walkerloria adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT lowesbriand adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT hanjun adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT borcherschristophh adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT buttrickpeterm adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT kominskydouglasj adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT colganseanp adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia AT eltzschigholgerk adora2belicitedper2stabilizationpromotesahifdependentmetabolicswitchcriticalformyocardialadaptationtoischemia |