Cargando…

Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function

Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor...

Descripción completa

Detalles Bibliográficos
Autores principales: Morais, Vanessa A, Verstreken, Patrik, Roethig, Anne, Smet, Joél, Snellinx, An, Vanbrabant, Mieke, Haddad, Dominik, Frezza, Christian, Mandemakers, Wim, Vogt-Weisenhorn, Daniela, Van Coster, Rudy, Wurst, Wolfgang, Scorrano, Luca, De Strooper, Bart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378121/
https://www.ncbi.nlm.nih.gov/pubmed/20049710
http://dx.doi.org/10.1002/emmm.200900006
_version_ 1782236022755557376
author Morais, Vanessa A
Verstreken, Patrik
Roethig, Anne
Smet, Joél
Snellinx, An
Vanbrabant, Mieke
Haddad, Dominik
Frezza, Christian
Mandemakers, Wim
Vogt-Weisenhorn, Daniela
Van Coster, Rudy
Wurst, Wolfgang
Scorrano, Luca
De Strooper, Bart
author_facet Morais, Vanessa A
Verstreken, Patrik
Roethig, Anne
Smet, Joél
Snellinx, An
Vanbrabant, Mieke
Haddad, Dominik
Frezza, Christian
Mandemakers, Wim
Vogt-Weisenhorn, Daniela
Van Coster, Rudy
Wurst, Wolfgang
Scorrano, Luca
De Strooper, Bart
author_sort Morais, Vanessa A
collection PubMed
description Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge.
format Online
Article
Text
id pubmed-3378121
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher WILEY-VCH Verlag
record_format MEDLINE/PubMed
spelling pubmed-33781212012-09-17 Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function Morais, Vanessa A Verstreken, Patrik Roethig, Anne Smet, Joél Snellinx, An Vanbrabant, Mieke Haddad, Dominik Frezza, Christian Mandemakers, Wim Vogt-Weisenhorn, Daniela Van Coster, Rudy Wurst, Wolfgang Scorrano, Luca De Strooper, Bart EMBO Mol Med Research Articles Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge. WILEY-VCH Verlag 2009-05 /pmc/articles/PMC3378121/ /pubmed/20049710 http://dx.doi.org/10.1002/emmm.200900006 Text en Copyright © 2009 EMBO Molecular Medicine
spellingShingle Research Articles
Morais, Vanessa A
Verstreken, Patrik
Roethig, Anne
Smet, Joél
Snellinx, An
Vanbrabant, Mieke
Haddad, Dominik
Frezza, Christian
Mandemakers, Wim
Vogt-Weisenhorn, Daniela
Van Coster, Rudy
Wurst, Wolfgang
Scorrano, Luca
De Strooper, Bart
Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title_full Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title_fullStr Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title_full_unstemmed Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title_short Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
title_sort parkinson's disease mutations in pink1 result in decreased complex i activity and deficient synaptic function
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378121/
https://www.ncbi.nlm.nih.gov/pubmed/20049710
http://dx.doi.org/10.1002/emmm.200900006
work_keys_str_mv AT moraisvanessaa parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT verstrekenpatrik parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT roethiganne parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT smetjoel parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT snellinxan parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT vanbrabantmieke parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT haddaddominik parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT frezzachristian parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT mandemakerswim parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT vogtweisenhorndaniela parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT vancosterrudy parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT wurstwolfgang parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT scorranoluca parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction
AT destrooperbart parkinsonsdiseasemutationsinpink1resultindecreasedcomplexiactivityanddeficientsynapticfunction