Cargando…
RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction
Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted usi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378861/ https://www.ncbi.nlm.nih.gov/pubmed/22287623 http://dx.doi.org/10.1093/nar/gks009 |
_version_ | 1782236091147878400 |
---|---|
author | Washietl, Stefan Hofacker, Ivo L. Stadler, Peter F. Kellis, Manolis |
author_facet | Washietl, Stefan Hofacker, Ivo L. Stadler, Peter F. Kellis, Manolis |
author_sort | Washietl, Stefan |
collection | PubMed |
description | Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted using ‘pseudo-energies’ to minimize the discrepancy between prediction and experiment. Our framework differs from related approaches that used pseudo-energies in several key aspects. (i) The energy model is only changed when necessary and no adjustments are made if prediction and experiment are consistent. (ii) Pseudo-energies remain biophysically interpretable and hold positional information where experiment and model disagree. (iii) The whole thermodynamic ensemble of structures is considered thus allowing to reconstruct mixtures of suboptimal structures from seemingly contradicting data. (iv) The noise of the energy model and the experimental data is explicitly modeled leading to an intuitive weighting factor through which the problem can be seen as folding with ‘soft’ constraints of different strength. We present an efficient algorithm to iteratively calculate pseudo-energies within this framework and demonstrate how this approach can be used in combination with SHAPE chemical probing data to improve secondary structure prediction. We further demonstrate that the pseudo-energies correlate with biophysical effects that are known to affect RNA folding such as chemical nucleotide modifications and protein binding. |
format | Online Article Text |
id | pubmed-3378861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33788612012-06-20 RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction Washietl, Stefan Hofacker, Ivo L. Stadler, Peter F. Kellis, Manolis Nucleic Acids Res Computational Biology Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted using ‘pseudo-energies’ to minimize the discrepancy between prediction and experiment. Our framework differs from related approaches that used pseudo-energies in several key aspects. (i) The energy model is only changed when necessary and no adjustments are made if prediction and experiment are consistent. (ii) Pseudo-energies remain biophysically interpretable and hold positional information where experiment and model disagree. (iii) The whole thermodynamic ensemble of structures is considered thus allowing to reconstruct mixtures of suboptimal structures from seemingly contradicting data. (iv) The noise of the energy model and the experimental data is explicitly modeled leading to an intuitive weighting factor through which the problem can be seen as folding with ‘soft’ constraints of different strength. We present an efficient algorithm to iteratively calculate pseudo-energies within this framework and demonstrate how this approach can be used in combination with SHAPE chemical probing data to improve secondary structure prediction. We further demonstrate that the pseudo-energies correlate with biophysical effects that are known to affect RNA folding such as chemical nucleotide modifications and protein binding. Oxford University Press 2012-05 2012-01-28 /pmc/articles/PMC3378861/ /pubmed/22287623 http://dx.doi.org/10.1093/nar/gks009 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Computational Biology Washietl, Stefan Hofacker, Ivo L. Stadler, Peter F. Kellis, Manolis RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title | RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title_full | RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title_fullStr | RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title_full_unstemmed | RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title_short | RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
title_sort | rna folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378861/ https://www.ncbi.nlm.nih.gov/pubmed/22287623 http://dx.doi.org/10.1093/nar/gks009 |
work_keys_str_mv | AT washietlstefan rnafoldingwithsoftconstraintsreconciliationofprobingdataandthermodynamicsecondarystructureprediction AT hofackerivol rnafoldingwithsoftconstraintsreconciliationofprobingdataandthermodynamicsecondarystructureprediction AT stadlerpeterf rnafoldingwithsoftconstraintsreconciliationofprobingdataandthermodynamicsecondarystructureprediction AT kellismanolis rnafoldingwithsoftconstraintsreconciliationofprobingdataandthermodynamicsecondarystructureprediction |