Cargando…
PPARδ Activation Rescues Pancreatic β-Cell Line INS-1E from Palmitate-Induced Endoplasmic Reticulum Stress through Enhanced Fatty Acid Oxidation
One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388384/ https://www.ncbi.nlm.nih.gov/pubmed/22792088 http://dx.doi.org/10.1155/2012/680684 |
Sumario: | One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of functional pancreatic β cells. PPARδ is an orphan nuclear receptor. It plays a pivotal role in regulating the metabolism of dietary lipids and fats. However, the correlation between PPARδ of fatty acids and ER stress of pancreatic β cells is not quite clear till date. Here, we show that PPARδ attenuates palmitate-induced ER stress of pancreatic β cells. On the other hand, PPARδ agonist inhibits both abnormal changes in ER structure and activation of signaling cascade, which is downstream ER stress. Further, we illustrate that PPARδ attenuates palmitate-induced ER stress by promoting fatty acid oxidation through treatment with etomoxir, an inhibitor of fatty acid oxidation. It dramatically abolishes PPARδ-mediated inhibition of ER stress. Finally, we show that PPARδ could protect pancreatic β cells from palmitate-induced cell death and dysfunction of insulin secretion. Our work elucidates the protective effect of PPARδ on the fatty-acid-induced toxicity of pancreatic β cells. |
---|