Cargando…
Pathological Significance of Mitochondrial Glycation
Glycation, the nonenzymatic glycosylation of biomolecules, is commonly observed in diabetes and ageing. Reactive dicarbonyl species such as methylglyoxal and glyoxal are thought to be major physiological precursors of glycation. Because these dicarbonyls tend to be formed intracellularly, the levels...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388455/ https://www.ncbi.nlm.nih.gov/pubmed/22778743 http://dx.doi.org/10.1155/2012/843505 |
Sumario: | Glycation, the nonenzymatic glycosylation of biomolecules, is commonly observed in diabetes and ageing. Reactive dicarbonyl species such as methylglyoxal and glyoxal are thought to be major physiological precursors of glycation. Because these dicarbonyls tend to be formed intracellularly, the levels of advanced glycation end products on cellular proteins are higher than on extracellular ones. The formation of glycation adducts within cells can have severe functional consequences such as inhibition of protein activity and promotion of DNA mutations. Although several lines of evidence suggest that there are specific mitochondrial targets of glycation, and mitochondrial dysfunction itself has been implicated in disease and ageing, it is unclear if glycation of biomolecules specifically within mitochondria induces dysfunction and contributes to disease pathology. We discuss here the possibility that mitochondrial glycation contributes to disease, focussing on diabetes, ageing, cancer, and neurodegeneration, and highlight the current limitations in our understanding of the pathological significance of mitochondrial glycation. |
---|