Cargando…
Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes
INTRODUCTION: Obesity is one of the major risk factors for the development of osteoarthritis (OA). Although the mechanical factors appear to be critical, recent studies have suggested a role for adipokines in cartilage degradation. Chondrocytes from osteoarthritic cartilage respond poorly to insulin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392816/ https://www.ncbi.nlm.nih.gov/pubmed/22289259 http://dx.doi.org/10.1186/ar3705 |
_version_ | 1782237651779190784 |
---|---|
author | Yammani, Raghunatha R Loeser, Richard F |
author_facet | Yammani, Raghunatha R Loeser, Richard F |
author_sort | Yammani, Raghunatha R |
collection | PubMed |
description | INTRODUCTION: Obesity is one of the major risk factors for the development of osteoarthritis (OA). Although the mechanical factors appear to be critical, recent studies have suggested a role for adipokines in cartilage degradation. Chondrocytes from osteoarthritic cartilage respond poorly to insulin-like growth factor-1 (IGF-1) and the molecular mechanism(s) involved is not clearly understood. The purpose of the present study was to determine the role of extracellular nicotinamide phosphoribosyltransferase (eNAMPT/visfatin), a newly described adipokine, in regulating IGF-1 function in chondrocytes. METHODS: Human articular chondrocytes isolated from normal ankle cartilage were pretreated with eNAMPT (0.1 to 5.0 μg/ml) overnight followed by stimulation with IGF-1 (50 ng/ml) for 24 hours, and proteoglycan synthesis was measured by [(35)S]sulfate incorporation. Chondrocytes were pretreated with eNAMPT overnight followed by IGF-1 for 10 minutes, and the cell lysates were immunoblotted for various signaling proteins that are activated by IGF-1 using phosphospecific antibodies. In addition, chondrocytes were pretreated with mitogen-activated protein kinase kinase inhibitor (U0126) prior to stimulation with eNAMPT and IGF-1. RESULTS: Pretreatment of chondrocytes with eNAMPT inhibited IGF-1-stimulated proteoglycan synthesis in a dose-dependent manner. Treatment of chondrocytes with eNAMPT inhibited IGF-1-induced phosphorylation of signaling molecules, including insulin receptor substrate-1 and AKT. Interestingly, pretreatment of chondrocytes with eNAMPT did not inhibit IGF-1-mediated phosphorylation of the IGF-1 receptor; however, it stimulated a sustained phosphorylation of the extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. Inhibition of the ERK/MAPK signaling pathway restored IGF-1-mediated insulin receptor substrate-1 and AKT phosphorylation. CONCLUSIONS: Our study demonstrates that eNAMPT/visfatin inhibits IGF-1 function in articular chondrocytes by activating the ERK/MAPK pathway independent of the IGF-1 receptor. Since eNAMPT levels are elevated in the synovial fluid of OA patients, the signaling pathway activated by eNAMPT could contribute to IGF-1 resistance in OA. |
format | Online Article Text |
id | pubmed-3392816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33928162012-07-11 Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes Yammani, Raghunatha R Loeser, Richard F Arthritis Res Ther Research Article INTRODUCTION: Obesity is one of the major risk factors for the development of osteoarthritis (OA). Although the mechanical factors appear to be critical, recent studies have suggested a role for adipokines in cartilage degradation. Chondrocytes from osteoarthritic cartilage respond poorly to insulin-like growth factor-1 (IGF-1) and the molecular mechanism(s) involved is not clearly understood. The purpose of the present study was to determine the role of extracellular nicotinamide phosphoribosyltransferase (eNAMPT/visfatin), a newly described adipokine, in regulating IGF-1 function in chondrocytes. METHODS: Human articular chondrocytes isolated from normal ankle cartilage were pretreated with eNAMPT (0.1 to 5.0 μg/ml) overnight followed by stimulation with IGF-1 (50 ng/ml) for 24 hours, and proteoglycan synthesis was measured by [(35)S]sulfate incorporation. Chondrocytes were pretreated with eNAMPT overnight followed by IGF-1 for 10 minutes, and the cell lysates were immunoblotted for various signaling proteins that are activated by IGF-1 using phosphospecific antibodies. In addition, chondrocytes were pretreated with mitogen-activated protein kinase kinase inhibitor (U0126) prior to stimulation with eNAMPT and IGF-1. RESULTS: Pretreatment of chondrocytes with eNAMPT inhibited IGF-1-stimulated proteoglycan synthesis in a dose-dependent manner. Treatment of chondrocytes with eNAMPT inhibited IGF-1-induced phosphorylation of signaling molecules, including insulin receptor substrate-1 and AKT. Interestingly, pretreatment of chondrocytes with eNAMPT did not inhibit IGF-1-mediated phosphorylation of the IGF-1 receptor; however, it stimulated a sustained phosphorylation of the extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. Inhibition of the ERK/MAPK signaling pathway restored IGF-1-mediated insulin receptor substrate-1 and AKT phosphorylation. CONCLUSIONS: Our study demonstrates that eNAMPT/visfatin inhibits IGF-1 function in articular chondrocytes by activating the ERK/MAPK pathway independent of the IGF-1 receptor. Since eNAMPT levels are elevated in the synovial fluid of OA patients, the signaling pathway activated by eNAMPT could contribute to IGF-1 resistance in OA. BioMed Central 2012 2012-01-30 /pmc/articles/PMC3392816/ /pubmed/22289259 http://dx.doi.org/10.1186/ar3705 Text en Copyright ©2012 Yammani et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yammani, Raghunatha R Loeser, Richard F Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title | Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title_full | Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title_fullStr | Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title_full_unstemmed | Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title_short | Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
title_sort | extracellular nicotinamide phosphoribosyltransferase (nampt/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392816/ https://www.ncbi.nlm.nih.gov/pubmed/22289259 http://dx.doi.org/10.1186/ar3705 |
work_keys_str_mv | AT yammaniraghunathar extracellularnicotinamidephosphoribosyltransferasenamptvisfatininhibitsinsulinlikegrowthfactor1signalingandproteoglycansynthesisinhumanarticularchondrocytes AT loeserrichardf extracellularnicotinamidephosphoribosyltransferasenamptvisfatininhibitsinsulinlikegrowthfactor1signalingandproteoglycansynthesisinhumanarticularchondrocytes |