Cargando…

Detecting Individual Sites Subject to Episodic Diversifying Selection

The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to identify sites subject to pervasive selection, may fail t...

Descripción completa

Detalles Bibliográficos
Autores principales: Murrell, Ben, Wertheim, Joel O., Moola, Sasha, Weighill, Thomas, Scheffler, Konrad, Kosakovsky Pond, Sergei L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395634/
https://www.ncbi.nlm.nih.gov/pubmed/22807683
http://dx.doi.org/10.1371/journal.pgen.1002764
Descripción
Sumario:The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly underestimated.