Cargando…
A Reverse Time-Course Method for Transcriptional Chase Analyses of mRNA Half-Lives in Cultured Cells
Standard methods for assessing mRNA stabilities in intact cells are labor-intensive and can generate half-life (t(1/2)) measures that are both imprecise and inaccurate. We describe modifications to a conventional tetracycline-conditional transcriptional chase method for analyzing mRNA stability that...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396636/ https://www.ncbi.nlm.nih.gov/pubmed/22808270 http://dx.doi.org/10.1371/journal.pone.0040827 |
Sumario: | Standard methods for assessing mRNA stabilities in intact cells are labor-intensive and can generate half-life (t(1/2)) measures that are both imprecise and inaccurate. We describe modifications to a conventional tetracycline-conditional transcriptional chase method for analyzing mRNA stability that significantly simplify its conduct, while generating highly reproducible and accurate t(1/2) values. The revised method–which is conducted as a reverse time course, and which accounts for interval expansion in the number of cultured cells–is validated for the analyses of mRNAs with both short and long half-lives. This approach facilitates accurate assessment of mRNA metabolism, providing a user-friendly tool for detailed investigations into their structures and functions, as well as the processes that contribute to their post-transcriptional regulation. |
---|