Cargando…
Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition
To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specif...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408131/ https://www.ncbi.nlm.nih.gov/pubmed/22848789 http://dx.doi.org/10.1038/srep00543 |
Sumario: | To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specific promoters, enhancing iron translocation through overproduction of the natural metal chelator nicotianamine, and enhancing iron flux into the endosperm by means of iron(II)-nicotianamine transporter OsYSL2 expression under the control of an endosperm-specific promoter and sucrose transporter promoter. Our results indicate that the iron concentration in greenhouse-grown T(2) polished seeds was sixfold higher and that in paddy field-grown T(3) polished seeds was 4.4-fold higher than that in non-transgenic seeds, with no defect in yield. Moreover, the transgenic seeds accumulated zinc up to 1.6-times in the field. Our results demonstrate that introduction of multiple iron homeostasis genes is more effective for iron biofortification than the single introduction of individual genes. |
---|