Cargando…

Local Arginase Inhibition during Early Reperfusion Mediates Cardioprotection via Increased Nitric Oxide Production

Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonon, Adrian T., Jung, Christian, Katz, Abram, Westerblad, Håkan, Shemyakin, Alexey, Sjöquist, Per-Ove, Lundberg, Jon O., Pernow, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409239/
https://www.ncbi.nlm.nih.gov/pubmed/22860052
http://dx.doi.org/10.1371/journal.pone.0042038
Descripción
Sumario:Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion. The pigs were randomized to intracoronary infusion of vehicle (n = 7), the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA, 2 mg/min, n = 7), the combination of nor-NOHA and the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 0.35 mg/min, n = 6) into the jeopardized myocardial area or systemic intravenous infusion of nor-NOHA (2 mg/min, n = 5) at the end of ischemia and start of reperfusion. The infarct size of the vehicle group was 80±4% of the area at risk. Intracoronary nor-NOHA reduced infarct size to 46±5% (P<0.01). Co-administration of L-NMMA abrogated the cardioprotective effect mediated by nor-NOHA (infarct size 72±6%). Intravenous nor-NOHA did not reduce infarct size. Arginase I and II were expressed in cardiomyocytes, endothelial, smooth muscle and poylmorphonuclear cells. There was no difference in cytosolic arginase I or mitochondrial arginase II expression between ischemic-reperfused and non-ischemic myocardium. Arginase activity increased 2-fold in the ischemic-reperfused myocardium in comparison with non-ischemic myocardium. In conclusion, ischemia-reperfusion increases arginase activity without affecting cytosolic arginase I or mitochondrial arginase II expression. Local arginase inhibition during early reperfusion reduces infarct size via a mechanism that is dependent on increased bioavailability of NO.