Cargando…
Sds22 and Repo-Man stabilize chromosome segregation by counteracting Aurora B on anaphase kinetochores
During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore–microtubule attachments must be maintained despite a drop of tension after removal of si...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410419/ https://www.ncbi.nlm.nih.gov/pubmed/22801782 http://dx.doi.org/10.1083/jcb.201112112 |
Sumario: | During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore–microtubule attachments must be maintained despite a drop of tension after removal of sister chromatid cohesion. Consistent with this requirement, Aurora B relocates away from chromosomes to the central spindle at the metaphase–anaphase transition. By ribonucleic acid interference screening using a phosphorylation biosensor, we identified two PP1-targeting subunits, Sds22 and Repo-Man, which counteracted Aurora B–dependent phosphorylation of the outer kinetochore component Dsn1 during anaphase. Sds22 or Repo-Man depletion induced transient pauses during poleward chromosome movement and a high incidence of chromosome missegregation. Thus, our study identifies PP1-targeting subunits that regulate the microtubule–kinetochore interface during anaphase for faithful chromosome segregation. |
---|