Cargando…

MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame

BACKGROUND: MDM4, also called MDMX or HDMX in humans, is an important negative regulator of the p53 tumor suppressor. MDM4 is overexpressed in about 17% of all cancers and more frequently in some types, such as colon cancer or retinoblastoma. MDM4 is known to be post-translationally regulated by MDM...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandke, Pooja, Wyatt, Nicholas, Fraser, Jillian, Bates, Benjamin, Berberich, Steven J., Markey, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411609/
https://www.ncbi.nlm.nih.gov/pubmed/22870278
http://dx.doi.org/10.1371/journal.pone.0042034
_version_ 1782239855458123776
author Mandke, Pooja
Wyatt, Nicholas
Fraser, Jillian
Bates, Benjamin
Berberich, Steven J.
Markey, Michael P.
author_facet Mandke, Pooja
Wyatt, Nicholas
Fraser, Jillian
Bates, Benjamin
Berberich, Steven J.
Markey, Michael P.
author_sort Mandke, Pooja
collection PubMed
description BACKGROUND: MDM4, also called MDMX or HDMX in humans, is an important negative regulator of the p53 tumor suppressor. MDM4 is overexpressed in about 17% of all cancers and more frequently in some types, such as colon cancer or retinoblastoma. MDM4 is known to be post-translationally regulated by MDM2-mediated ubiquitination to decrease its protein levels in response to genotoxic stress, resulting in accumulation and activation of p53. At the transcriptional level, MDM4 gene regulation has been less clearly understood. We have reported that DNA damage triggers loss of MDM4 mRNA and a concurrent increase in p53 activity. These experiments attempt to determine a mechanism for down-regulation of MDM4 mRNA. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that MDM4 mRNA is a target of hsa-mir-34a (miR-34a). MDM4 mRNA contains a lengthy 3′ untranslated region; however, we find that it is a miR-34a site within the open reading frame (ORF) of exon 11 that is responsible for the repression. Overexpression of miR-34a, but not a mutant miR-34a, is sufficient to decrease MDM4 mRNA levels to an extent identical to those of known miR-34a target genes. Likewise, MDM4 protein levels are decreased by miR-34a overexpression. Inhibition of endogenous miR-34a increased expression of miR-34a target genes and MDM4. A portion of MDM4 exon 11 containing this 8mer-A1 miR-34a site fused to a luciferase reporter gene is sufficient to confer responsiveness, being inhibited by additional expression of exogenous mir-34a and activated by inhibition of miR-34a. CONCLUSIONS/SIGNIFICANCE: These data establish a mechanism for the observed DNA damage-induced negative regulation of MDM4 and potentially provide a novel means to manipulate MDM4 expression without introducing DNA damage.
format Online
Article
Text
id pubmed-3411609
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34116092012-08-06 MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame Mandke, Pooja Wyatt, Nicholas Fraser, Jillian Bates, Benjamin Berberich, Steven J. Markey, Michael P. PLoS One Research Article BACKGROUND: MDM4, also called MDMX or HDMX in humans, is an important negative regulator of the p53 tumor suppressor. MDM4 is overexpressed in about 17% of all cancers and more frequently in some types, such as colon cancer or retinoblastoma. MDM4 is known to be post-translationally regulated by MDM2-mediated ubiquitination to decrease its protein levels in response to genotoxic stress, resulting in accumulation and activation of p53. At the transcriptional level, MDM4 gene regulation has been less clearly understood. We have reported that DNA damage triggers loss of MDM4 mRNA and a concurrent increase in p53 activity. These experiments attempt to determine a mechanism for down-regulation of MDM4 mRNA. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that MDM4 mRNA is a target of hsa-mir-34a (miR-34a). MDM4 mRNA contains a lengthy 3′ untranslated region; however, we find that it is a miR-34a site within the open reading frame (ORF) of exon 11 that is responsible for the repression. Overexpression of miR-34a, but not a mutant miR-34a, is sufficient to decrease MDM4 mRNA levels to an extent identical to those of known miR-34a target genes. Likewise, MDM4 protein levels are decreased by miR-34a overexpression. Inhibition of endogenous miR-34a increased expression of miR-34a target genes and MDM4. A portion of MDM4 exon 11 containing this 8mer-A1 miR-34a site fused to a luciferase reporter gene is sufficient to confer responsiveness, being inhibited by additional expression of exogenous mir-34a and activated by inhibition of miR-34a. CONCLUSIONS/SIGNIFICANCE: These data establish a mechanism for the observed DNA damage-induced negative regulation of MDM4 and potentially provide a novel means to manipulate MDM4 expression without introducing DNA damage. Public Library of Science 2012-08-01 /pmc/articles/PMC3411609/ /pubmed/22870278 http://dx.doi.org/10.1371/journal.pone.0042034 Text en © 2012 Mandke et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Mandke, Pooja
Wyatt, Nicholas
Fraser, Jillian
Bates, Benjamin
Berberich, Steven J.
Markey, Michael P.
MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title_full MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title_fullStr MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title_full_unstemmed MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title_short MicroRNA-34a Modulates MDM4 Expression via a Target Site in the Open Reading Frame
title_sort microrna-34a modulates mdm4 expression via a target site in the open reading frame
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411609/
https://www.ncbi.nlm.nih.gov/pubmed/22870278
http://dx.doi.org/10.1371/journal.pone.0042034
work_keys_str_mv AT mandkepooja microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe
AT wyattnicholas microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe
AT fraserjillian microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe
AT batesbenjamin microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe
AT berberichstevenj microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe
AT markeymichaelp microrna34amodulatesmdm4expressionviaatargetsiteintheopenreadingframe