Cargando…
A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes
Understanding differentiation, a biological process from a multipotent stem or progenitor state to a mature cell is critically important. We developed a theoretical framework to quantify the underlying potential landscape and pathways for cell development and differentiation. We proposed a new mecha...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412324/ https://www.ncbi.nlm.nih.gov/pubmed/22870379 http://dx.doi.org/10.1038/srep00550 |
_version_ | 1782239953856495616 |
---|---|
author | Feng, Haidong Wang, Jin |
author_facet | Feng, Haidong Wang, Jin |
author_sort | Feng, Haidong |
collection | PubMed |
description | Understanding differentiation, a biological process from a multipotent stem or progenitor state to a mature cell is critically important. We developed a theoretical framework to quantify the underlying potential landscape and pathways for cell development and differentiation. We proposed a new mechanism of differentiation and found the differentiated states can emerge from the slow binding/unbinding of regulatory proteins to gene promoters. With slow promoter binding/unbinding, we found multiple meta-stable differentiated states, which can explain the origin of multiple states observed in recent experiments. The kinetic time for the differentiation and reprogramming strongly depends on the time scale of the promoter binding/unbinding processes. We discovered an optimal speed for differentiation for certain promoter binding/unbinding rates. Future experiments might be able to tell if cells differentiate at that optimal speed. We also quantified irreversible kinetic pathways for the differentiation and reprogramming, which captures the non-equilibrium dynamics in multipotent stem or progenitor cells. |
format | Online Article Text |
id | pubmed-3412324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-34123242012-08-06 A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes Feng, Haidong Wang, Jin Sci Rep Article Understanding differentiation, a biological process from a multipotent stem or progenitor state to a mature cell is critically important. We developed a theoretical framework to quantify the underlying potential landscape and pathways for cell development and differentiation. We proposed a new mechanism of differentiation and found the differentiated states can emerge from the slow binding/unbinding of regulatory proteins to gene promoters. With slow promoter binding/unbinding, we found multiple meta-stable differentiated states, which can explain the origin of multiple states observed in recent experiments. The kinetic time for the differentiation and reprogramming strongly depends on the time scale of the promoter binding/unbinding processes. We discovered an optimal speed for differentiation for certain promoter binding/unbinding rates. Future experiments might be able to tell if cells differentiate at that optimal speed. We also quantified irreversible kinetic pathways for the differentiation and reprogramming, which captures the non-equilibrium dynamics in multipotent stem or progenitor cells. Nature Publishing Group 2012-08-01 /pmc/articles/PMC3412324/ /pubmed/22870379 http://dx.doi.org/10.1038/srep00550 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Feng, Haidong Wang, Jin A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title | A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title_full | A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title_fullStr | A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title_full_unstemmed | A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title_short | A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
title_sort | new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412324/ https://www.ncbi.nlm.nih.gov/pubmed/22870379 http://dx.doi.org/10.1038/srep00550 |
work_keys_str_mv | AT fenghaidong anewmechanismofstemcelldifferentiationthroughslowbindingunbindingofregulatorstogenes AT wangjin anewmechanismofstemcelldifferentiationthroughslowbindingunbindingofregulatorstogenes AT fenghaidong newmechanismofstemcelldifferentiationthroughslowbindingunbindingofregulatorstogenes AT wangjin newmechanismofstemcelldifferentiationthroughslowbindingunbindingofregulatorstogenes |