Cargando…

E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism

E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1−/− mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mou...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanchet, Emilie, Annicotte, Jean-Sébastien, Pradelli, Ludivine A., Hugon, Gérald, Matecki, Stéfan, Mornet, Dominique, Rivier, François, Fajas, Lluis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412384/
https://www.ncbi.nlm.nih.gov/pubmed/22678059
http://dx.doi.org/10.1093/hmg/dds219
_version_ 1782239955884441600
author Blanchet, Emilie
Annicotte, Jean-Sébastien
Pradelli, Ludivine A.
Hugon, Gérald
Matecki, Stéfan
Mornet, Dominique
Rivier, François
Fajas, Lluis
author_facet Blanchet, Emilie
Annicotte, Jean-Sébastien
Pradelli, Ludivine A.
Hugon, Gérald
Matecki, Stéfan
Mornet, Dominique
Rivier, François
Fajas, Lluis
author_sort Blanchet, Emilie
collection PubMed
description E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1−/− mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1−/−;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.
format Online
Article
Text
id pubmed-3412384
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-34123842012-08-06 E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism Blanchet, Emilie Annicotte, Jean-Sébastien Pradelli, Ludivine A. Hugon, Gérald Matecki, Stéfan Mornet, Dominique Rivier, François Fajas, Lluis Hum Mol Genet Articles E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1−/− mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1−/−;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD. Oxford University Press 2012-09-01 2012-06-07 /pmc/articles/PMC3412384/ /pubmed/22678059 http://dx.doi.org/10.1093/hmg/dds219 Text en © The Author 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Blanchet, Emilie
Annicotte, Jean-Sébastien
Pradelli, Ludivine A.
Hugon, Gérald
Matecki, Stéfan
Mornet, Dominique
Rivier, François
Fajas, Lluis
E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title_full E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title_fullStr E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title_full_unstemmed E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title_short E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism
title_sort e2f transcription factor-1 deficiency reduces pathophysiology in the mouse model of duchenne muscular dystrophy through increased muscle oxidative metabolism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412384/
https://www.ncbi.nlm.nih.gov/pubmed/22678059
http://dx.doi.org/10.1093/hmg/dds219
work_keys_str_mv AT blanchetemilie e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT annicottejeansebastien e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT pradelliludivinea e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT hugongerald e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT mateckistefan e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT mornetdominique e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT rivierfrancois e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism
AT fajaslluis e2ftranscriptionfactor1deficiencyreducespathophysiologyinthemousemodelofduchennemusculardystrophythroughincreasedmuscleoxidativemetabolism