Cargando…

Analysis of p-Si macropore etching using FFT-impedance spectroscopy

The dependence of the etch mechanism of lithographically seeded macropores in low-doped p-type silicon on water and hydrofluoric acid (HF) concentrations has been investigated. Using different HF concentrations (prepared from 48 and 73 wt.% HF) in organic electrolytes, the pore morphologies of etche...

Descripción completa

Detalles Bibliográficos
Autores principales: Ossei-Wusu, Emmanuel, Carstensen, Jürgen, Föll, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413546/
https://www.ncbi.nlm.nih.gov/pubmed/22716663
http://dx.doi.org/10.1186/1556-276X-7-320
Descripción
Sumario:The dependence of the etch mechanism of lithographically seeded macropores in low-doped p-type silicon on water and hydrofluoric acid (HF) concentrations has been investigated. Using different HF concentrations (prepared from 48 and 73 wt.% HF) in organic electrolytes, the pore morphologies of etched samples have been related to in situ impedance spectra (IS) obtained by Fast Fourier Transform (FFT) technique. It will be shown that most of the data can be fitted with a simple equivalent circuit model. The model predicts that the HF concentration is responsible for the net silicon dissolution rate, while the dissolution rate selectivity at the pore tips and walls that ultimately enables pore etching depends on the water content. The ‘quality’ of the pores increases with decreasing water content in HF/organic electrolytes.