Cargando…
Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells
Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Humana Press Inc
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413820/ https://www.ncbi.nlm.nih.gov/pubmed/22700373 http://dx.doi.org/10.1007/s12031-012-9816-3 |
_version_ | 1782240111795109888 |
---|---|
author | Yi, P. Schrott, L. Castor, T. P. Alexander, J. S. |
author_facet | Yi, P. Schrott, L. Castor, T. P. Alexander, J. S. |
author_sort | Yi, P. |
collection | PubMed |
description | Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD. |
format | Online Article Text |
id | pubmed-3413820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Humana Press Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-34138202012-08-23 Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells Yi, P. Schrott, L. Castor, T. P. Alexander, J. S. J Mol Neurosci Article Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD. Humana Press Inc 2012-06-15 2012 /pmc/articles/PMC3413820/ /pubmed/22700373 http://dx.doi.org/10.1007/s12031-012-9816-3 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Yi, P. Schrott, L. Castor, T. P. Alexander, J. S. Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title | Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title_full | Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title_fullStr | Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title_full_unstemmed | Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title_short | Bryostatin-1 vs. TPPB: Dose-Dependent APP Processing and PKC-α, -δ, and -ε Isoform Activation in SH-SY5Y Neuronal Cells |
title_sort | bryostatin-1 vs. tppb: dose-dependent app processing and pkc-α, -δ, and -ε isoform activation in sh-sy5y neuronal cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413820/ https://www.ncbi.nlm.nih.gov/pubmed/22700373 http://dx.doi.org/10.1007/s12031-012-9816-3 |
work_keys_str_mv | AT yip bryostatin1vstppbdosedependentappprocessingandpkcadandeisoformactivationinshsy5yneuronalcells AT schrottl bryostatin1vstppbdosedependentappprocessingandpkcadandeisoformactivationinshsy5yneuronalcells AT castortp bryostatin1vstppbdosedependentappprocessingandpkcadandeisoformactivationinshsy5yneuronalcells AT alexanderjs bryostatin1vstppbdosedependentappprocessingandpkcadandeisoformactivationinshsy5yneuronalcells |