Cargando…

Is BAC Transgenesis Obsolete? State of the Art in the Era of Designer Nucleases

DNA constructs based on bacterial artificial chromosomes (BACs) are frequently used to generate transgenic animals as they reduce the influence of position effects and allow predictable expression patterns for genes whose regulatory sequences are not fully identified. Despite these advantages BAC tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Beil, J., Fairbairn, L., Pelczar, P., Buch, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413995/
https://www.ncbi.nlm.nih.gov/pubmed/22899885
http://dx.doi.org/10.1155/2012/308414
Descripción
Sumario:DNA constructs based on bacterial artificial chromosomes (BACs) are frequently used to generate transgenic animals as they reduce the influence of position effects and allow predictable expression patterns for genes whose regulatory sequences are not fully identified. Despite these advantages BAC transgenics suffer from drawbacks such as complicated vector construction, low efficiency of transgenesis, and some remaining expression variegation. The recent development of transcription activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) has resulted in new transgenic techniques which do not have the drawbacks associated with BAC transgenesis. Initial reports indicate that such designer nucleases (DNs) allow the targeted insertion of transgenes into endogenous loci by direct injection of the targeting vector and mRNA/DNA encoding the predesigned nucleases into oocytes. This results in the transgene being inserted at a specific locus in the mouse genome, thus circumventing the drawbacks associated with BAC transgenesis.