Cargando…

Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution

Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bietenhader, Maïlis, Martos, Alexandre, Tetaud, Emmanuel, Aiyar, Raeka S., Sellem, Carole H., Kucharczyk, Roza, Clauder-Münster, Sandra, Giraud, Marie-France, Godard, François, Salin, Bénédicte, Sagot, Isabelle, Gagneur, Julien, Déquard-Chablat, Michelle, Contamine, Véronique, Denmat, Sylvie Hermann-Le, Sainsard-Chanet, Annie, Steinmetz, Lars M., di Rago, Jean-Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420929/
https://www.ncbi.nlm.nih.gov/pubmed/22916027
http://dx.doi.org/10.1371/journal.pgen.1002876
_version_ 1782240946306416640
author Bietenhader, Maïlis
Martos, Alexandre
Tetaud, Emmanuel
Aiyar, Raeka S.
Sellem, Carole H.
Kucharczyk, Roza
Clauder-Münster, Sandra
Giraud, Marie-France
Godard, François
Salin, Bénédicte
Sagot, Isabelle
Gagneur, Julien
Déquard-Chablat, Michelle
Contamine, Véronique
Denmat, Sylvie Hermann-Le
Sainsard-Chanet, Annie
Steinmetz, Lars M.
di Rago, Jean-Paul
author_facet Bietenhader, Maïlis
Martos, Alexandre
Tetaud, Emmanuel
Aiyar, Raeka S.
Sellem, Carole H.
Kucharczyk, Roza
Clauder-Münster, Sandra
Giraud, Marie-France
Godard, François
Salin, Bénédicte
Sagot, Isabelle
Gagneur, Julien
Déquard-Chablat, Michelle
Contamine, Véronique
Denmat, Sylvie Hermann-Le
Sainsard-Chanet, Annie
Steinmetz, Lars M.
di Rago, Jean-Paul
author_sort Bietenhader, Maïlis
collection PubMed
description Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.
format Online
Article
Text
id pubmed-3420929
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34209292012-08-22 Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution Bietenhader, Maïlis Martos, Alexandre Tetaud, Emmanuel Aiyar, Raeka S. Sellem, Carole H. Kucharczyk, Roza Clauder-Münster, Sandra Giraud, Marie-France Godard, François Salin, Bénédicte Sagot, Isabelle Gagneur, Julien Déquard-Chablat, Michelle Contamine, Véronique Denmat, Sylvie Hermann-Le Sainsard-Chanet, Annie Steinmetz, Lars M. di Rago, Jean-Paul PLoS Genet Research Article Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms. Public Library of Science 2012-08-16 /pmc/articles/PMC3420929/ /pubmed/22916027 http://dx.doi.org/10.1371/journal.pgen.1002876 Text en © 2012 Bietenhader et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bietenhader, Maïlis
Martos, Alexandre
Tetaud, Emmanuel
Aiyar, Raeka S.
Sellem, Carole H.
Kucharczyk, Roza
Clauder-Münster, Sandra
Giraud, Marie-France
Godard, François
Salin, Bénédicte
Sagot, Isabelle
Gagneur, Julien
Déquard-Chablat, Michelle
Contamine, Véronique
Denmat, Sylvie Hermann-Le
Sainsard-Chanet, Annie
Steinmetz, Lars M.
di Rago, Jean-Paul
Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title_full Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title_fullStr Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title_full_unstemmed Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title_short Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
title_sort experimental relocation of the mitochondrial atp9 gene to the nucleus reveals forces underlying mitochondrial genome evolution
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420929/
https://www.ncbi.nlm.nih.gov/pubmed/22916027
http://dx.doi.org/10.1371/journal.pgen.1002876
work_keys_str_mv AT bietenhadermailis experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT martosalexandre experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT tetaudemmanuel experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT aiyarraekas experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT sellemcaroleh experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT kucharczykroza experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT claudermunstersandra experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT giraudmariefrance experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT godardfrancois experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT salinbenedicte experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT sagotisabelle experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT gagneurjulien experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT dequardchablatmichelle experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT contamineveronique experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT denmatsylviehermannle experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT sainsardchanetannie experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT steinmetzlarsm experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution
AT diragojeanpaul experimentalrelocationofthemitochondrialatp9genetothenucleusrevealsforcesunderlyingmitochondrialgenomeevolution