Cargando…

Relation between electrical properties of aerosol-deposited BaTiO(3) thin films and their mechanical hardness measured by nano-indentation

To achieve a high capacitance density for embedded decoupling capacitor applications, the aerosol deposition (AD) process was applied as a thin film deposition process. BaTiO(3) films were fabricated on Cu substrates by the AD process at room temperature, and the film thickness was reduced to confir...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hong-Ki, Oh, Jong-Min, In Kim, Soo, Kim, Hyung-Jun, Lee, Chang Woo, Nam, Song-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422166/
https://www.ncbi.nlm.nih.gov/pubmed/22616759
http://dx.doi.org/10.1186/1556-276X-7-264
Descripción
Sumario:To achieve a high capacitance density for embedded decoupling capacitor applications, the aerosol deposition (AD) process was applied as a thin film deposition process. BaTiO(3) films were fabricated on Cu substrates by the AD process at room temperature, and the film thickness was reduced to confirm the limit of the critical minimum thickness for dielectric properties. As a result, the BaTiO(3) thin films that were less than 1-μm thick showed unstable electric properties owing to their high leakage currents. Therefore, to overcome this problem, the causes of the high leakage currents were investigated. In this study, it was confirmed that by comparing BaTiO(3) thin films on Cu substrates with those on stainless steels (SUS) substrates, macroscopic defects and rough interfaces between films and substrates influence the leakage currents. Moreover, based on the deposition mechanism of the AD process, it was considered that the BaTiO(3) thin films on Cu substrates with thicknesses of less than 1 μm are formed with chinks and weak particle-to-particle bonding, giving rise to leakage currents. In order to confirm the relation between the above-mentioned surface morphologies and the dielectric behavior, the hardness of BaTiO(3) films on Cu and SUS substrates was investigated by nano-indentation. Consequently, we proposed that the chinks and weak particle-to-particle bonding in the BaTiO(3) thin films with thicknesses of less than 0.5 μm on Cu substrates could be the main cause of the high leakage currents.