Cargando…
A Point Mutation in cycA Partially Contributes to the D-cycloserine Resistance Trait of Mycobacterium bovis BCG Vaccine Strains
In mycobacteria, CycA a D-serine, L- and D-alanine, and glycine transporter also functions in the uptake of D-cycloserine, an important second-line anti-tubercular drug. A single nucleotide polymorphism identified in the cycA gene of BCG was hypothesized to contribute to the increased resistance of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422274/ https://www.ncbi.nlm.nih.gov/pubmed/22912881 http://dx.doi.org/10.1371/journal.pone.0043467 |
Sumario: | In mycobacteria, CycA a D-serine, L- and D-alanine, and glycine transporter also functions in the uptake of D-cycloserine, an important second-line anti-tubercular drug. A single nucleotide polymorphism identified in the cycA gene of BCG was hypothesized to contribute to the increased resistance of Mycobacterium bovis bacillus Calmette-Guérin (BCG) to D-cycloserine compared to wild-type Mycobacterium tuberculosis or Mycobacterium bovis. Working along these lines, a merodiploid strain of BCG expressing Mycobacterium tuberculosis CycA was generated and found to exhibit increased susceptibility to D-cycloserine albeit not to the same extent as wild-type Mycobacterium tuberculosis or Mycobacterium bovis. In addition, recombinant Mycobacterium smegmatis strains expressing either Mycobacterium tuberculosis or Mycobacterium bovis CycA but not BCG CycA were rendered more susceptible to D-cycloserine. These findings support the notion that CycA-mediated uptake in BCG is impaired as a result of a single nucleotide polymorphism; however, the partial contribution of this impairment to D-cycloserine resistance suggests the involvement of additional genetic lesions in this phenotype. |
---|