Cargando…
Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats
BACKGROUND: Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431253/ https://www.ncbi.nlm.nih.gov/pubmed/22734518 http://dx.doi.org/10.1186/1423-0127-19-61 |
_version_ | 1782242048226623488 |
---|---|
author | Liao, Pi-Hung Yang, Hui-Hua Chou, Ping-Tse Wang, Ming-Hseng Chu, Po-Chun Liu, Hao-Li Chen, Li-Kuang |
author_facet | Liao, Pi-Hung Yang, Hui-Hua Chou, Ping-Tse Wang, Ming-Hseng Chu, Po-Chun Liu, Hao-Li Chen, Li-Kuang |
author_sort | Liao, Pi-Hung |
collection | PubMed |
description | BACKGROUND: Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection. METHODS: The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF) and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure. The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ), and focused ultrasound (FUS) were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb) 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies. RESULTS: The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats. CONCLUSIONS: We demonstrated that the BBB permeability was altered in a rat model with rabies virus inoculation. Delivery of neutralizing mAb to the infected site in brain combined with effective breakdown of BBB could be an aggressive but feasible therapeutic mode in rabies when the CNS infection has been established. |
format | Online Article Text |
id | pubmed-3431253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34312532012-08-31 Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats Liao, Pi-Hung Yang, Hui-Hua Chou, Ping-Tse Wang, Ming-Hseng Chu, Po-Chun Liu, Hao-Li Chen, Li-Kuang J Biomed Sci Research BACKGROUND: Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection. METHODS: The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF) and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure. The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ), and focused ultrasound (FUS) were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb) 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies. RESULTS: The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats. CONCLUSIONS: We demonstrated that the BBB permeability was altered in a rat model with rabies virus inoculation. Delivery of neutralizing mAb to the infected site in brain combined with effective breakdown of BBB could be an aggressive but feasible therapeutic mode in rabies when the CNS infection has been established. BioMed Central 2012-06-26 /pmc/articles/PMC3431253/ /pubmed/22734518 http://dx.doi.org/10.1186/1423-0127-19-61 Text en Copyright ©2012 Pi-Hung et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Liao, Pi-Hung Yang, Hui-Hua Chou, Ping-Tse Wang, Ming-Hseng Chu, Po-Chun Liu, Hao-Li Chen, Li-Kuang Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title | Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title_full | Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title_fullStr | Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title_full_unstemmed | Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title_short | Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
title_sort | sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431253/ https://www.ncbi.nlm.nih.gov/pubmed/22734518 http://dx.doi.org/10.1186/1423-0127-19-61 |
work_keys_str_mv | AT liaopihung sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT yanghuihua sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT choupingtse sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT wangminghseng sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT chupochun sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT liuhaoli sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats AT chenlikuang sufficientvirusneutralizingantibodyinthecentralnervesystemimprovesthesurvivalofrabidrats |