Cargando…

Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice

The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to...

Descripción completa

Detalles Bibliográficos
Autores principales: Grimston, Susan K., Watkins, Marcus P., Brodt, Michael D., Silva, Matthew J., Civitelli, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438198/
https://www.ncbi.nlm.nih.gov/pubmed/22970183
http://dx.doi.org/10.1371/journal.pone.0044222
_version_ 1782242886111199232
author Grimston, Susan K.
Watkins, Marcus P.
Brodt, Michael D.
Silva, Matthew J.
Civitelli, Roberto
author_facet Grimston, Susan K.
Watkins, Marcus P.
Brodt, Michael D.
Silva, Matthew J.
Civitelli, Roberto
author_sort Grimston, Susan K.
collection PubMed
description The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO). Relative to wild type (WT) littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice.
format Online
Article
Text
id pubmed-3438198
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34381982012-09-11 Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice Grimston, Susan K. Watkins, Marcus P. Brodt, Michael D. Silva, Matthew J. Civitelli, Roberto PLoS One Research Article The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO). Relative to wild type (WT) littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice. Public Library of Science 2012-09-10 /pmc/articles/PMC3438198/ /pubmed/22970183 http://dx.doi.org/10.1371/journal.pone.0044222 Text en © 2012 Grimston et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Grimston, Susan K.
Watkins, Marcus P.
Brodt, Michael D.
Silva, Matthew J.
Civitelli, Roberto
Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title_full Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title_fullStr Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title_full_unstemmed Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title_short Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
title_sort enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438198/
https://www.ncbi.nlm.nih.gov/pubmed/22970183
http://dx.doi.org/10.1371/journal.pone.0044222
work_keys_str_mv AT grimstonsusank enhancedperiostealandendocorticalresponsestoaxialtibialcompressionloadinginconditionalconnexin43deficientmice
AT watkinsmarcusp enhancedperiostealandendocorticalresponsestoaxialtibialcompressionloadinginconditionalconnexin43deficientmice
AT brodtmichaeld enhancedperiostealandendocorticalresponsestoaxialtibialcompressionloadinginconditionalconnexin43deficientmice
AT silvamatthewj enhancedperiostealandendocorticalresponsestoaxialtibialcompressionloadinginconditionalconnexin43deficientmice
AT civitelliroberto enhancedperiostealandendocorticalresponsestoaxialtibialcompressionloadinginconditionalconnexin43deficientmice