Cargando…
An integrative probabilistic model for identification of structural variation in sequencing data
Paired-end sequencing is a common approach for identifying structural variation (SV) in genomes. Discrepancies between the observed and expected alignments indicate potential SVs. Most SV detection algorithms use only one of the possible signals and ignore reads with multiple alignments. This result...
Autores principales: | Sindi, Suzanne S, Önal, Selim, Peng, Luke C, Wu, Hsin-Ta, Raphael, Benjamin J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439973/ https://www.ncbi.nlm.nih.gov/pubmed/22452995 http://dx.doi.org/10.1186/gb-2012-13-3-r22 |
Ejemplares similares
-
omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data
por: Drewe-Boss, Philipp, et al.
Publicado: (2018) -
LUMPY: a probabilistic framework for structural variant discovery
por: Layer, Ryan M, et al.
Publicado: (2014) -
Probabilistic error correction for RNA sequencing
por: Le, Hai-Son, et al.
Publicado: (2013) -
cnvHiTSeq: integrative models for high-resolution copy number variation detection and genotyping using population sequencing data
por: Bellos, Evangelos, et al.
Publicado: (2012) -
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2022)