Cargando…
Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition
BACKGROUND: Pro-inflammatory stimuli, including cytokines like Interleukin-1β, Interleukin-6 and Interferon-γ, in the brain have been proposed to exacerbate existing Alzheimer’s disease (AD) neuropathology by increasing amyloidogenic processing of APP and promoting further Aβ accumulation in AD. On...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441281/ https://www.ncbi.nlm.nih.gov/pubmed/22838967 http://dx.doi.org/10.1186/1750-1326-7-36 |
_version_ | 1782243254362701824 |
---|---|
author | Chakrabarty, Paramita Tianbai, Li Herring, Amanda Ceballos-Diaz, Carolina Das, Pritam Golde, Todd E |
author_facet | Chakrabarty, Paramita Tianbai, Li Herring, Amanda Ceballos-Diaz, Carolina Das, Pritam Golde, Todd E |
author_sort | Chakrabarty, Paramita |
collection | PubMed |
description | BACKGROUND: Pro-inflammatory stimuli, including cytokines like Interleukin-1β, Interleukin-6 and Interferon-γ, in the brain have been proposed to exacerbate existing Alzheimer’s disease (AD) neuropathology by increasing amyloidogenic processing of APP and promoting further Aβ accumulation in AD. On the other hand, anti-inflammatory cytokines have been suggested to be neuroprotective by reducing neuroinflammation and clearing Aβ. To test this hypothesis, we used adeno-associated virus serotype 1 (AAV2/1) to express an anti-inflammatory cytokine, murine Interleukin-4 (mIL-4), in the hippocampus of APP transgenic TgCRND8 mice with pre-existing plaques. RESULTS: mIL-4 expression resulted in establishment of an “M2-like” phenotype in the brain and was accompanied by exacerbated Aβ deposition in TgCRND8 mice brains. No change in holo APP or APP C terminal fragment or phosphorylated tau levels were detected in mIL-4 expressing CRND8 cohorts. Biochemical analysis shows increases in both SDS soluble and insoluble Aβ. mIL-4 treatment attenuates soluble Aβ40 uptake by microglia but does not affect aggregated Aβ42 internalization by microglia or soluble Aβ40 internalization by astrocytes. CONCLUSIONS: Short term focal mIL-4 expression in the hippocampus leads to exacerbation of amyloid deposition in vivo, possibly mediated by acute suppression of glial clearance mechanisms. Given that recent preclinical data from independent groups indicate engagement of the innate immune system early on during disease pathogenesis may be beneficial, our present study strongly argues for a cautious re-examination of unwarranted side–effects of anti-inflammatory therapies for neurodegenerative diseases, including AD. |
format | Online Article Text |
id | pubmed-3441281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34412812012-09-14 Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition Chakrabarty, Paramita Tianbai, Li Herring, Amanda Ceballos-Diaz, Carolina Das, Pritam Golde, Todd E Mol Neurodegener Research Article BACKGROUND: Pro-inflammatory stimuli, including cytokines like Interleukin-1β, Interleukin-6 and Interferon-γ, in the brain have been proposed to exacerbate existing Alzheimer’s disease (AD) neuropathology by increasing amyloidogenic processing of APP and promoting further Aβ accumulation in AD. On the other hand, anti-inflammatory cytokines have been suggested to be neuroprotective by reducing neuroinflammation and clearing Aβ. To test this hypothesis, we used adeno-associated virus serotype 1 (AAV2/1) to express an anti-inflammatory cytokine, murine Interleukin-4 (mIL-4), in the hippocampus of APP transgenic TgCRND8 mice with pre-existing plaques. RESULTS: mIL-4 expression resulted in establishment of an “M2-like” phenotype in the brain and was accompanied by exacerbated Aβ deposition in TgCRND8 mice brains. No change in holo APP or APP C terminal fragment or phosphorylated tau levels were detected in mIL-4 expressing CRND8 cohorts. Biochemical analysis shows increases in both SDS soluble and insoluble Aβ. mIL-4 treatment attenuates soluble Aβ40 uptake by microglia but does not affect aggregated Aβ42 internalization by microglia or soluble Aβ40 internalization by astrocytes. CONCLUSIONS: Short term focal mIL-4 expression in the hippocampus leads to exacerbation of amyloid deposition in vivo, possibly mediated by acute suppression of glial clearance mechanisms. Given that recent preclinical data from independent groups indicate engagement of the innate immune system early on during disease pathogenesis may be beneficial, our present study strongly argues for a cautious re-examination of unwarranted side–effects of anti-inflammatory therapies for neurodegenerative diseases, including AD. BioMed Central 2012-07-29 /pmc/articles/PMC3441281/ /pubmed/22838967 http://dx.doi.org/10.1186/1750-1326-7-36 Text en Copyright ©2012 Chakrabarty et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chakrabarty, Paramita Tianbai, Li Herring, Amanda Ceballos-Diaz, Carolina Das, Pritam Golde, Todd E Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title_full | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title_fullStr | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title_full_unstemmed | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title_short | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition |
title_sort | hippocampal expression of murine il-4 results in exacerbation of amyloid deposition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441281/ https://www.ncbi.nlm.nih.gov/pubmed/22838967 http://dx.doi.org/10.1186/1750-1326-7-36 |
work_keys_str_mv | AT chakrabartyparamita hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition AT tianbaili hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition AT herringamanda hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition AT ceballosdiazcarolina hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition AT daspritam hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition AT goldetodde hippocampalexpressionofmurineil4resultsinexacerbationofamyloiddeposition |