Cargando…

Stochastic Simulations Suggest that HIV-1 Survives Close to Its Error Threshold

The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, [...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Kushal, Balagam, Rajesh, Vishnoi, Nisheeth K., Dixit, Narendra M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441496/
https://www.ncbi.nlm.nih.gov/pubmed/23028282
http://dx.doi.org/10.1371/journal.pcbi.1002684
Descripción
Sumario:The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, [Image: see text], however, is not known. Application of the quasispecies theory to determine [Image: see text] poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and [Image: see text]. We found that with small mutation rates, the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that quantitatively captured data of viral diversification in HIV-1 patients, we estimated [Image: see text] to be [Image: see text] substitutions/site/replication, ∼2–6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-based approaches to describing HIV-1 evolution. Further, [Image: see text] increased with the recombination rate, rendering HIV-1 less susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of [Image: see text] may serve as a quantitative guideline for the use of mutagenic drugs against HIV-1.