Cargando…
Flux variability scanning based on enforced objective flux for identifying gene amplification targets
BACKGROUND: In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been em...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443430/ https://www.ncbi.nlm.nih.gov/pubmed/22909053 http://dx.doi.org/10.1186/1752-0509-6-106 |
_version_ | 1782243560253292544 |
---|---|
author | Park, Jong Myoung Park, Hye Min Kim, Won Jun Kim, Hyun Uk Kim, Tae Yong Lee, Sang Yup |
author_facet | Park, Jong Myoung Park, Hye Min Kim, Won Jun Kim, Hyun Uk Kim, Tae Yong Lee, Sang Yup |
author_sort | Park, Jong Myoung |
collection | PubMed |
description | BACKGROUND: In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. RESULTS: We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. CONCLUSIONS: FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be generally useful for developing industrially important microbial strains having enhanced capabilities of producing chemicals of interest. |
format | Online Article Text |
id | pubmed-3443430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34434302012-09-18 Flux variability scanning based on enforced objective flux for identifying gene amplification targets Park, Jong Myoung Park, Hye Min Kim, Won Jun Kim, Hyun Uk Kim, Tae Yong Lee, Sang Yup BMC Syst Biol Methodology Article BACKGROUND: In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. RESULTS: We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. CONCLUSIONS: FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be generally useful for developing industrially important microbial strains having enhanced capabilities of producing chemicals of interest. BioMed Central 2012-08-21 /pmc/articles/PMC3443430/ /pubmed/22909053 http://dx.doi.org/10.1186/1752-0509-6-106 Text en Copyright ©2012 Park et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Park, Jong Myoung Park, Hye Min Kim, Won Jun Kim, Hyun Uk Kim, Tae Yong Lee, Sang Yup Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title | Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title_full | Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title_fullStr | Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title_full_unstemmed | Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title_short | Flux variability scanning based on enforced objective flux for identifying gene amplification targets |
title_sort | flux variability scanning based on enforced objective flux for identifying gene amplification targets |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443430/ https://www.ncbi.nlm.nih.gov/pubmed/22909053 http://dx.doi.org/10.1186/1752-0509-6-106 |
work_keys_str_mv | AT parkjongmyoung fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets AT parkhyemin fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets AT kimwonjun fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets AT kimhyunuk fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets AT kimtaeyong fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets AT leesangyup fluxvariabilityscanningbasedonenforcedobjectivefluxforidentifyinggeneamplificationtargets |