Cargando…

Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer

INTRODUCTION: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of br...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Qing, Chang, Jeffrey T, Geradts, Joseph, Neckers, Leonard M, Haystead, Timothy, Spector, Neil L, Lyerly, H Kim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446397/
https://www.ncbi.nlm.nih.gov/pubmed/22510516
http://dx.doi.org/10.1186/bcr3168
_version_ 1782243965236412416
author Cheng, Qing
Chang, Jeffrey T
Geradts, Joseph
Neckers, Leonard M
Haystead, Timothy
Spector, Neil L
Lyerly, H Kim
author_facet Cheng, Qing
Chang, Jeffrey T
Geradts, Joseph
Neckers, Leonard M
Haystead, Timothy
Spector, Neil L
Lyerly, H Kim
author_sort Cheng, Qing
collection PubMed
description INTRODUCTION: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. METHODS: We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). RESULTS: Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. CONCLUSIONS: Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.
format Online
Article
Text
id pubmed-3446397
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34463972012-09-20 Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer Cheng, Qing Chang, Jeffrey T Geradts, Joseph Neckers, Leonard M Haystead, Timothy Spector, Neil L Lyerly, H Kim Breast Cancer Res Research Article INTRODUCTION: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. METHODS: We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). RESULTS: Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. CONCLUSIONS: Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease. BioMed Central 2012 2012-04-17 /pmc/articles/PMC3446397/ /pubmed/22510516 http://dx.doi.org/10.1186/bcr3168 Text en Copyright ©2012 Cheng et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Cheng, Qing
Chang, Jeffrey T
Geradts, Joseph
Neckers, Leonard M
Haystead, Timothy
Spector, Neil L
Lyerly, H Kim
Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title_full Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title_fullStr Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title_full_unstemmed Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title_short Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
title_sort amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446397/
https://www.ncbi.nlm.nih.gov/pubmed/22510516
http://dx.doi.org/10.1186/bcr3168
work_keys_str_mv AT chengqing amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT changjeffreyt amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT geradtsjoseph amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT neckersleonardm amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT haysteadtimothy amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT spectorneill amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer
AT lyerlyhkim amplificationandhighlevelexpressionofheatshockprotein90marksaggressivephenotypesofhumanepidermalgrowthfactorreceptor2negativebreastcancer